Access to drinking water is one of the greatest global challenges today. In this study, the virus removal properties of mille‐feuille nanocellulose‐based filter papers of varying thicknesses from simulated waste water (SWW) matrix are evaluated for drinking water purification applications. Filtrations of standard SWW dispersions at various total suspended solid (TSS) content are performed, including spiking tests with 30 nm surrogate latex particles and 28 nm ΦX174 bacteriophages. Filter papers of thicknesses 9 and 29 µm are used, and the filtrations are performed at two different operational pressures, i.e., 1 and 3 bar. The presented data using SWW matrix show, for the first time, that a filter paper made from 100% nanocellulose has the capacity to efficiently remove even the smallest viruses, i.e., up to 99.9980–99.9995% efficiency, at industrially relevant flow rates, i.e., 60–500 L m
−2
h
−1
, and low fouling, i.e.,
V
max
> 10
3
–10
4
L m
−2
. The filter paper presented in this work shows great promise for the development of robust, affordable, and sustainable water purification systems.
Pressure-dependent breakthrough of nanobioparticles in filtration was observed and it was related to depend on both convective forces due to flow and diffusion as a result of Brownian motion. The aim of this work was to investigate the significance of Brownian motion on nanoparticle and virus capture in a nanocellulose-based virus removal filter paper through theoretical modeling and filtration experiments. Local flow velocities in the pores of the filter paper were modeled through two different approaches (i.e., with the Hagen–Poiseuille equation) and by evaluating the superficial linear flow velocity through the filter. Simulations by solving the Langevin equation for 5 nm gold particles and 28 nm ΦX174 bacteriophages showed that hydrodynamic constraint is favored for larger particles. Filtration of gold nanoparticles showed no difference in retention for the investigated fluxes, as predicted by the modeling of local flow velocities. Filtration of ΦX174 bacteriophages exhibited a higher retention at higher filtration pressure, which was predicted to some extent by the Hagen–Poiseuille equation but not by evaluation of the superficial linear velocity. In all, the hydrodynamic theory was shown able to explain some of the observations during filtration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.