Cerebrospinal fluid (CSF) viral escape has been poorly described among people with HIV-associated cryptococcal meningitis. We determined the prevalence of CSF viral escape and HIV-1 viral load (VL) trajectories in individuals treated for HIV-associated cryptococcal meningitis. A retrospective longitudinal study was performed using paired CSF and plasma collected prior to and during the antifungal treatment of 83 participants recruited at the Botswana site of the phase-3 AMBITION-cm trial (2018–2021). HIV-1 RNA levels were quantified then CSF viral escape (CSF HIV-1 RNA ≥ 0.5 log10 higher than plasma) and HIV-1 VL trajectories were assessed. CSF viral escape occurred in 20/62 (32.3%; 95% confidence interval [CI]: 21.9–44.6%), 13/52 (25.0%; 95% CI: 15.2–38.2%) and 1/33 (3.0%; 95% CI: 0.16–15.3%) participants at days 1, 7 and 14 respectively. CSF viral escape was significantly lower on day 14 compared to days 1 and 7, p = 0.003 and p = 0.02, respectively. HIV-1 VL decreased significantly from day 1 to day 14 post antifungal therapy in the CSF but not in the plasma (β = −0.47; 95% CI: −0.69 to −0.25; p < 0.001). CSF viral escape is high among individuals presenting with HIV-associated cryptococcal meningitis; however, antifungal therapy may reverse this, highlighting the importance of rapid initiation of antifungal therapy in these patients.
Background: Individuals living with human immunodeficiency virus (HIV) who experience virological failure (VF) after combination antiretroviral therapy (cART) initiation may have had low-frequency drug resistance mutations (DRMs) at cART initiation. There are no data on low-frequency DRMs among cART-naïve HIV-positive individuals in Botswana.Methods: We evaluated the prevalence of low-frequency DRMs among cART-naïve individuals previously sequenced using Sanger sequencing. The generated pol amplicons were sequenced by next-generation sequencing.Results: We observed low-frequency DRMs (detected at <20% in 33/103 (32%) of the successfully sequenced individuals, of whom four also had mutations detected at >20%. K65R was the most common low-frequency DRM detected in 8 individuals. Eighty-two of the 103 individuals had follow-up viral load data while on cART. Twenty-seven of the 82 individuals harbored lowfrequency DRMs. Only 12 of 82 individuals experienced VF. The following low-frequency DRMs were observed in four individuals experiencing VF: K65R, K103N, V108I, and Y188C. No statistically significant difference was observed in the prevalence of lowfrequency DRMs between individuals experiencing VF (4/12) and those not experiencing VF (23/70) (P = .97). However, individuals with non-nucleoside reverse transcriptase inhibitors-associated low-frequency DRMs were 2.68 times more likely to experience VF (odds ratio, 2.68; 95% confidential interval, 0.4-13.9) compared with those without (P = .22). Conclusion:Next-generation sequencing was able to detect low-frequency DRMs in this cohort in Botswana, but these DRMs did not contribute significantly to VF. Abbreviations: ANCs = antenatal clinics, BHP = Botswana Harvard AIDS Partnership, cART = combination antiretroviral therapy, DRMs = drug resistance mutations, DTG = dolutegravir, EFV = efavirenz, FTC = emtricitabine, HIV = human immunodeficiency virus, IDCC = infectious disease care clinics, KRISP = Kwazulu-Natal Research Innovation and Sequencing Platform, NGS = next generation sequencing, NNRTI = non-nucleoside reverse transcriptase inhibitors, NRTI = nucleoside reverse transcriptase inhitors, OR = odds ratio, PASeq = polymorphism analysis sequencing, PCR = polymerase chain reaction, PI = protease inhibitors, PR = protease, RNA = ribonucleic acid, RT = reverse transcriptase, TB = tuberculosis, TDF = tenofovir disoproxil fumarate, VF = virological failure, VL = viral load.
Dolutegravir (DTG) is a potent anti-HIV drug that is used to treat HIV globally. There have been reports of mutations in the HIV-1 3′-polypurine tract (3′PPT) of the nef gene, contributing to DTG failure; however, there are limited ‘real-world’ data on this. In addition, there is a knowledge gap on the variability of 3′PPT residues in patients receiving combination antiretroviral therapy (cART) with and without viral load (VL) suppression. HIV-1 subtype C (HIV-1C) whole-genome sequences from cART naïve and experienced individuals were generated using next-generation sequencing. The nef gene sequences were trimmed from the generated whole-genome sequences using standard bioinformatics tools. In addition, we generated separate integrase and nef gene sequences by Sanger sequencing of plasma samples from individuals with virologic failure (VF) while on a DTG/raltegravir (RAL)-based cART. Analysis of 3′PPT residues was performed, and comparison of proportions computed using Pearson’s chi-square test with p-values < 0.05 was considered statistically significant. A total of 6009 HIV-1C full genome sequences were generated and had a median log10 HIV-1 VL (Q1, Q3) copies/mL of 1.60 (1.60, 2.60). A total of 12 matching integrase and nef gene sequences from therapy-experienced participants failing DTG/ RAL-based cART were generated. HIV-1C 3′PPT nef gene sequences from therapy-experienced patients failing DTG cART (n = 12), cART naïve individuals (n = 1263), and individuals on cART with and without virological suppression (n = 4696) all had a highly conserved 3′PPT motif with no statistically significant differences identified. Our study confirms the high conservation of the HIV-1 nef gene 3′PPT motif in ‘real-world’ patients and showed no differences in the motif according to VL suppression or INSTI-based cART failure. Future studies should explore other HIV-1 regions outside of the pol gene for associations with DTG failure.
Cerebrospinal fluid (CSF) viral escape has been poorly described among people with HIV-associated cryptococcal meningitis. We determined the prevalence of CSF viral escape and HIV-1 viral load (VL) trajectories in individuals treated for HIV-associated cryptococcal meningitis. A retrospective longitudinal study was performed using paired CSF and plasma collected prior to and during the antifungal treatment of 83 participants recruited at the Botswana site of the phase-3 AMBITION-cm trial (2018-2021). HIV-1 RNA levels were quantified then CSF viral escape (CSF HIV-1 RNA ≥ 0.5 log10 higher than plasma) and HIV-1 VL trajectories were assessed. CSF viral escape occurred in 20/62 (32.3%; 95% confidence interval [CI]: 21.9%-44.6%), 13/52 (25.0%; 95% CI: 15.2%-38.2%) and 1/33 (3.0%; 95% CI: 0.16%-15.3%) participants at days 1, 7 and 14 respectively. CSF viral escape was significantly lower on day 14 compared to days 1 and 7, p=0.003 and p=0.02, respectively. HIV-1 VL de-creased significantly from day 1 to day 14 post antifungal therapy in the CSF but not in the plasma (OR, 0.56; 95% CI: 0.41-0.77; p<0.001). CSF viral escape is high among individuals presenting with HIV-associated cryptococcal meningitis; however, antifungal therapy may reverse this, highlighting the importance of rapid initiation of antifungal therapy in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.