We hypothesized that a single session of resistance exercise performed in moderate hypoxic (FiO: 14%) environmental conditions would potentiate the anabolic response during the recovery period spent in normoxia. Twenty subjects performed a 1-leg knee extension session in normoxic or hypoxic conditions. Muscle biopsies were taken 15 min and 4 h after exercise in the vastus lateralis of the exercised and the nonexercised legs. Blood and saliva samples were taken at regular intervals before, during, and after the exercise session. The muscle fractional-protein synthetic rate was determined by deuterium incorporation into proteins, and the protein-degradation rate was determined by methylhistidine release from skeletal muscle. We found that: 1) hypoxia blunted the activation of protein synthesis after resistance exercise; 2) hypoxia down-regulated the transcriptional program of autophagy; 3) hypoxia regulated the expression of genes involved in glucose metabolism at rest and the genes involved in myoblast differentiation and fusion and in muscle contraction machinery after exercise; and 4) the hypoxia-inducible factor-1α pathway was not activated at the time points studied. Contrary to our hypothesis, environmental hypoxia did not potentiate the short-term anabolic response after resistance exercise, but it initiated transcriptional regulations that could potentially translate into satellite cell incorporation and higher force production in the long term.-Gnimassou, O., Fernández-Verdejo, R., Brook, M., Naslain, D., Balan, E., Sayda, M., Cegielski, J., Nielens, H., Decottignies, A., Demoulin, J.-B., Smith, K., Atherton, P. J., Fancaux, M., Deldicque, L. Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle.
Skeletal muscle mass reflects a dynamic turnover between net protein synthesis and degradation. In addition, satellite cell inclusion may contribute to increase muscle mass while fiber loss results in a reduction of muscle mass. Since 2010, a few studies looked at the involvement of the newly discovered Hippo pathway in the regulation of muscle mass. In line with its roles in other organs, it has been hypothesized that the Hippo pathway could play a role in different regulatory mechanisms in skeletal muscle as well, namely proliferation and renewal of satellite cells, differentiation, death, and growth of myogenic cells. While the Hippo components have been identified in skeletal muscle, their role in muscle mass regulation has been less investigated and conflicting results have been reported. Indeed, the first studies described both atrophic and hypertrophic roles of the Hippo pathway and its effectors Yap/Taz using different biochemical approaches. Further, investigation is therefore warranted to determine the role of the Hippo pathway in the regulation of skeletal muscle mass. New components of the pathway will probably emerge and unsuspected roles will likely be discovered due to its numerous interactions with different cellular processes. This mini-review aims to summarize the current literature concerning the roles of the Hippo pathway in the regulation of muscle mass and to develop the hypothesis that this pathway could contribute to muscle mass adaptation after exercise.
Acute hypoxia has previously been suggested to potentiate resistance traininginduced hypertrophy by activating satellite cell-dependent myogenesis rather than an improvement in protein balance in human. Here, we tested this hypothesis after a 4-week hypoxic vs normoxic resistance training protocol. For that purpose, 19 physically active male subjects were recruited to perform 6 sets of 10 repetitions of a one-leg knee extension exercise at 80% 1-RM 3 times/week for 4 weeks in normoxia (FiO 2 : 0.21; n = 9) or in hypoxia (FiO 2 : 0.135, n = 10). Blood and skeletal muscle samples were taken before and after the training period. Muscle fractional protein synthetic rate was measured over the whole period by deuterium incorporation into the protein pool and muscle thickness by ultrasound. At the end of the training protocol, the strength gain was higher in the hypoxic vs the normoxic group despite no changes in muscle thickness and in the fractional protein synthetic rate. Only early myogenesis, as assessed by higher MyoD and Myf5 mRNA levels, appeared to be enhanced by hypoxia compared to normoxia. No effects were found on myosin heavy chain expression, markers of oxidative metabolism and lactate transport in the skeletal muscle. Though the present study failed to unravel clearly the mechanisms by which hypoxic resistance training is particularly potent to increase muscle strength, 2 of 15 | van DOORSLaER DE tEn RYEn Et aL.
Objective Hypoxia is a state of lowered oxygen tension in tissue that can be created by environmental or pathological conditions. Whatever the origin of hypoxia, different tissues will adapt acutely and/or chronically to deal with this reduction in oxygen availability. Hypoxia has recently emerged as a particularly efficient stimulus to stimulate muscle cell proliferation and accretion of muscle mass and hypoxic resistance training has become popular amongst athletes as it is thought to favor muscle accretion. However, the molecular mechanisms are largely unknown. Methods To determine those molecular mechanisms, 19 volunteers participated to 12 sessions of resistance training spread over 4 weeks whether in normoxia (n=9) or in hypoxia (n=10, FiO213.5% corresponding to 3500m altitude). Each session consisted in 6 sets of 10 repetitions of a one-leg extension exercise at 80% of one repetition maximum (1-RM). Blood and muscle samples in each leg were taken before and after the 4-week training period. Fiber types were determined by immunohistochemistry based on myosin heavy chain isotypes. Blood saturation (SpO2, pulsoximetry) and tissue saturation index (TSI, near-infrared spectroscopy) were monitored during the exercise sessions. Results Muscle thickness determined by ultrasound was increased by 7% in normoxia only (p=0.04). The 1-RM was increased in both groups but the increase was higher in hypoxia (+34%) than in normoxia (+24%) (p=0.02). In average, SpO2stayed around 98-99% in normoxia and around 93-94% in hypoxia during each set of contractions. No difference in TSI between normoxia and hypoxia was measured, which averaged 60% before starting muscle contractions and 40% during muscle contractions. A trend towards a shift in fiber type from type I to type IIa was observed in normoxia (p<0.09) but not in hypoxia. Fiber area was not modified by any condition. Conclusions In summary, 4 weeks of hypoxic resistance training induced a larger increase in 1-RM compared to normoxic resistance training, independently of muscle hypertrophy or any change in fiber type. Further investigation should determine whether metabolic or molecular changes may explain this potentiation of maximal muscle force by hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.