Dynamics of blood containing gold nanoparticles on a syringe and other objects with a nonuniform thickness is of importance to experts in the industry. This study presents the significance of partial slip (i.e. combination of linear stretching and velocity gradient) and buoyancy on the boundary layer flow of blood-gold Carreau nanofluid over an upper horizontal surface of a paraboloid of revolution (uhspr). In this report, the viscosity of the Carreau fluid corresponding to an infinite shear-rate is assumed as zero, meanwhile, the viscosity corresponding to zero shear-rate, density, thermal conductivity, and heat capacity were assumed to vary with the volume fraction of nanoparticles. The governing equation that models the transport phenomenon were non-dimensionalized and parameterized using suitable similarity variables and solved numerically using classical Runge-Kutta method with shooting techniques and MATLAB bvp4c package for validation. The results show that temperature distribution across the flow decreases more significantly with buoyancy-related parameter when the influence of partial slip was maximized. Maximum velocity of the flow is ascertained at larger values of partial slip and buoyancy parameters. At smaller values of Deborah number and large values of volume fraction, 806
The transport phenomenon involving a thorough mixture of a base fluid and any two different types of nanoparticles (i.e. hybrid nanofluid) has attracted the attention of scientists to deliberate on the significance and performance of such fluid using two different types of thermo-physical models (i.e. type I and type II). This study examines the dynamics of hybrid nanofluids using type I and type II hybrid models with major emphasis on the difference. Also, this report unravels the significance of suction and dual stretching on the boundary layer flow of hybrid nanofluids. The governing equation that model the dynamics was modeled, non-dimenzionalized, parameterized, and solved numerically. It is concluded that both type I and type II models of viscosity should not be used for volume fraction ϕ1 + ϕ2 > 0.02 as both models are found to be the same, accurate but limited. The stretching ratio has dual effects on the velocity in both horizontal directions and temperature distribution decreases with stretching rate. Local skin friction coefficients and temperature distribution are decreasing properties of suction. In the case of various water-based conveying various nanoparticles (seven different hybrid nanofluids), optimal Nusselt number is ascertained at a larger value of stretching ratio and suction in the dynamics of water conveying (less dense nanoparticles) multiple wall CNT and silicon dioxide.
Purpose The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm alumina-water nanofluid within the thin boundary layer in the presence of quartic autocatalytic kind of chemical reaction effects, and to unravel the effects of a magnetic field parameter, random motion of the tiny nanoparticles and volume fraction on the flow. Design/methodology/approach The chemical reaction between homogeneous (Eyring-Powell 36 nm alumina-water) bulk fluid and heterogeneous (three molecules of the catalyst at the surface) in the flow of magnetohydrodynamic three-dimensional flow is modeled as a quartic autocatalytic kind of chemical reaction. The electromagnetic radiation which occurs within the boundary layer is treated as the nonlinear form due to the fact that Taylor series expansion may not give full details of such effects within the boundary layer. With the aid of appropriate similarity variables, the nonlinear coupled system of partial differential equation which models the flow was reduced to ordinary differential equation boundary value problem. Findings A favorable agreement of the present results is obtained by comparing it for a limiting case with the published results; hence, reliable results are presented. The concentration of homogeneous bulk fluid (Eyring-Powell nanofluid) increases and decreases with ϕ and Pr, respectively. The increase in the value of magnetic field parameter causes vertical and horizontal velocities of the flow within the boundary layer to decrease significantly. The decrease in the vertical and horizontal velocities of Eyring-Powell nanofluid flow within the boundary layer is guaranteed due to an increase in the value of M. Concentration of homogeneous fluid increases, while the concentration of the heterogeneous catalyst at the wall decreases with M. Originality/value Considering the industrial applications of thermal stratification in solar engineering and polymer processing where the behavior of the flow possesses attributes of Eyring-Powell 36 nm alumina-water, this paper presents the solution of the flow problem considering 36 nm alumina nanoparticles, thermophoresis, stratification of thermal energy, Brownian motion and nonlinear thermal radiation. In addition, the aim and objectives of this paper fill such vacuum in the industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.