RNA viruses that contain single-stranded RNA genomes of positive sense make up the largest group of pathogens infecting honey bees. Sacbrood virus (SBV) is one of the most widely distributed honey bee viruses and infects the larvae of honey bees, resulting in failure to pupate and death. Among all of the viruses infecting honey bees, SBV has the greatest number of complete genomes isolated from both European honey bees Apis mellifera and Asian honey bees A. cerana worldwide. To enhance our understanding of the evolution and pathogenicity of SBV, in this study, we present the first report of whole genome sequences of two U.S. strains of SBV. The complete genome sequences of the two U.S. SBV strains were deposited in GenBank under accession numbers: MG545286.1 and MG545287.1. Both SBV strains show the typical genomic features of the Iflaviridae family. The phylogenetic analysis of the single polyprotein coding region of the U.S. strains, and other GenBank SBV submissions revealed that SBV strains split into two distinct lineages, possibly reflecting host affiliation. The phylogenetic analysis based on the 5′UTR revealed a monophyletic clade with the deep parts of the tree occupied by SBV strains from both A. cerane and A. mellifera, and the tips of branches of the tree occupied by SBV strains from A. mellifera. The study of the cold stress on the pathogenesis of the SBV infection showed that cold stress could have profound effects on sacbrood disease severity manifested by increased mortality of infected larvae. This result suggests that the high prevalence of sacbrood disease in early spring may be due to the fluctuating temperatures during the season. This study will contribute to a better understanding of the evolution and pathogenesis of SBV infection in honey bees, and have important epidemiological relevance.
The synergistic interactions between the ectoparasitic mite Varroa destructor and Deformed wing virus (DWV) lead to the reduction in lifespan of the European honey bee Apis mellifera and often have been implicated in colony losses worldwide. However, to date, the underlying processes and mechanisms that form the multipartite interaction between the bee, mite, and virus have not been fully explained. To gain a better understanding of honey bees’ defense response to Varroa mite infestation and DWV infection, the DWV titers and transcription profiles of genes originating from RNAi, immunity, wound response, and homeostatic signaling pathways were monitored over a period of eight days. With respect to DWV, we observed low viral titers at early timepoints that coincided with high levels of Toll pathway transcription factor Dorsal, and its downstream immune effector molecules Hymenoptaecin, Apidaecin, Abaecin, and Defensin 1. However, we observed a striking increase in viral titers beginning after two days that coincided with a decrease in Dorsal levels and its corresponding immune effector molecules, and the small ubiquitin-like modifier (SUMO) ligase repressor of Dorsal, PIAS3. We observed a similar expression pattern for genes expressing transcripts for the RNA interference (Dicer/Argonaute), wound/homeostatic (Janus Kinase), and tissue growth (Map kinase/Wnt) pathways. Our results demonstrate that on a whole, honey bees are able to mount an immediate, albeit, temporally limited, immune and homeostatic response to Varroa and DWV infections, after which downregulation of these pathways leaves the bee vulnerable to expansive viral replication. The critical insights into the defense response upon Varroa and DWV challenges generated in this study may serve as a solid base for future research on the development of effective and efficient disease management strategies in honey bees.
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism triggered by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene and is conserved in a wide range of eukaryotic organisms. The RNAi mechanism has provided unique opportunities for combating honey bee diseases caused by various parasites and pathogens. is a microsporidian parasite of European honey bees,, and has been associated with honey bee colony losses in some regions of the world. Here we explored the possibility of silencing the expression of a putative virulence factor encoding polar tube protein 3 () which is involved in host cell invasion as a therapeutic strategy for controlling parasites in honey bees. Our studies showed that the oral ingestion of a dsRNA corresponding to the sequences of could effectively suppress the expression of the gene in-infected bees and reduce load. In addition to the knockdown of gene expression, ingestion of -dsRNA also led to improved innate immunity in bees infected with along with an improvement in physiological performance and lifespan compared with untreated control bees. These results strongly suggest that RNAi-based therapeutics hold real promise for the effective treatment of honey bee diseases in the future, and warrant further investigation.
Pollinators are in decline thanks to the combined stresses of disease, pesticides, habitat loss, and climate. Honey bees face numerous pests and pathogens but arguably none are as devastating as Deformed wing virus (DWV). Understanding host‐pathogen interactions and virulence of DWV in honey bees is slowed by the lack of cost‐effective high‐throughput screening methods for viral infection. Currently, analysis of virus infection in bees and their colonies is tedious, requiring a well‐equipped molecular biology laboratory and the use of hazardous chemicals. Here we describe virus clones tagged with green fluorescent protein (GFP) or nanoluciferase (nLuc) that provide high‐throughput detection and quantification of virus infections. GFP fluorescence is measured noninvasively in living bees via commonly available long‐wave UV light sources and a smartphone camera, or a standard ultraviolet transilluminator gel imaging system. Nonlethal monitoring with GFP allows continuous screening of virus growth and serves as a direct breeding tool for identifying honey bee parents with increased antiviral resistance. Expression using the nLuc reporter strongly correlates with virus infection levels and is especially sensitive. Using multiple reporters, it is also possible to visualize competition, differential virulence, and host tissue targeting by co‐occuring pathogens. Finally, it is possible to directly assess the risk of cross‐species “spillover” from honey bees to other pollinators and vice versa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.