In this paper, cure monitoring of a composite laminate is conducted, followed by subsequent structural health monitoring (SHM). A distributed optical fibre (DOF) sensor was embedded between glass fibre fabric plies during manufacture; part of the DOF length was micro-braided using glass fibres, while the remaining length was left 'bare' (as-received condition). In situ and real-time strain measurement during the infusion and curing processes of the laminate was completed. Cure monitoring of composite materials using different fibre orientations, sensor locations, raw materials, and manufacturing methods has been widely studied. However, no consensus was reached due to differences in raw materials, temperature profile, manufacturing method, fibre orientation, and sensor location. The manufactured composite plate was then subjected to repeated loading during a quasi-static four-point bending test, and the strain development along the length of the DOF was recorded. Comparable results were obtained from the micro-braided and bare sections of the DOF, showing the suitability of micro-braided optical fibres for real-time strain monitoring in composite structures. The micro-braiding DOF facilitates handling for automated manufacturing methods and can be used to follow the full life cycle of a composite from fabrication till end-of-life.
Structural health monitoring is a fast growing area used to assess the state of various structures such as aircraft, building, bridge, wind turbine, pipe, automobile through appropriate data processing and interpretation. This article presents a novel technique of optimising the conventional optical fibres used for structural health monitoring, in order to improve their mechanical properties, and handling during the manufacturing process by micro-braiding the optical fibres. This study investigates and compares the tensile properties of the both micro-braided optical fibre and conventional optical fibres through uniaxial tensile tests. Experimental results show 85% improvement in strain at failure for the micro-braided optical fibre when compared to the optical fibres. Moreover, interfacial shear strength comparison, of the braiding yarn, between optical fibres and micro-braided optical fibre (carried out through micro-bond test) has also been conducted. In addition, the effect of embedding both micro-braided and conventional optical fibre in composite was also investigated by three-point bend test. Overall, the mechanical performance of the composite was not affected by the presence of micro-braided optical fibre. This article will also discuss the process and the advantage of micro-braided optical fibre for structural health monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.