Although pipecuronium is an M2 receptor antagonist with no M3 receptor antagonist properties, potentiation of reflex-induced bronchoconstriction is unlikely, because this effect occurred only at doses greater than those used clinically.
Inhibitory M 2 muscarinic receptors on parasympathetic nerve endings in the lungs decrease release of acetylcholine, inhibiting vagally induced bronchoconstriction. Neuronal M 2 receptor function can be studied using selective agonists and antagonists such as pilocarpine and gallamine. In pathogenfree guinea pigs indomethacin (1 mg/kg) did not alter the effect of either gallamine or pilocarpine, thus in pathogen free animals neuronal M 2 muscarinic receptors function independently of cyclooxygenase products. However, in guinea pigs infected with virus, (which causes temporary loss of M 2 receptor function), and then allowed to recover for 8 wk (to allow recovery of M 2 receptors), indomethacin prevented both gallamine's potentiation and pilocarpine's inhibition of vagally induced bronchoconstriction. This new effect of indomethacin was not blocked by the addition of a 5-lipoxygenase inhibitor, AA861. However, the selective COX II inhibitor, L-745,337, had the same effect as indomethacin. Since exposure to ozone also caused neuronal M 2 receptors to become dependent upon cyclooxygenase the effects of viral infection are likely to be due to inflammation. Thus, despite apparent recovery of normal M 2 receptor function after viral infection or ozone, linkage of these receptors is chronically altered such that they become largely dependent on the activity of COX II. ( J. Clin. Invest. 1996. 98:299-307. )
The function of M2 muscarinic autoreceptors on pulmonary parasympathetic nerves was investigated in the absence and presence of cyclooxygenase inhibitors in vivo. Guinea pigs were anesthetized, paralyzed, and artificially ventilated. Pulmonary inflation pressure, heart rate, and blood pressure were recorded. Electrical stimulation of vagus nerves produced bronchoconstriction (measured as an increase in pulmonary inflation pressure) and bradycardia. In control guinea pigs, pilocarpine (1 to 100 micrograms/kg) given intravenously stimulated inhibitory M2 muscarinic receptors on pulmonary parasympathetic nerves, thus attenuating vagally induced bronchoconstriction. Conversely, blockade of these autoreceptors by the selective M2 antagonist gallamine (0.1 to 10 mg/kg given intravenously) potentiated vagally induced bronchoconstriction. Separate groups of animals were given either indomethacin or naproxen. These cyclooxygenase inhibitors potentiated vagally induced bronchoconstriction. Furthermore, in those animals pretreated with either indomethacin or [+] naproxen, pilocarpine did not inhibit and gallamine did not potentiate vagally induced bronchoconstriction. In the heart, the effects of pilocarpine and gallamine on M2 muscarinic receptors were not altered by either cyclooxygenase inhibitor. Neither intravenously administered indomethacin (1 mg/kg) nor [+] naproxen (5 mg/kg) altered baseline pulmonary inflation pressure or baseline heart rate in the treated guinea pigs. These studies demonstrate that inhibitory M2 muscarinic receptors on pulmonary parasympathetic nerves do not function in the presence of cyclooxygenase inhibitors. Loss of M2 receptor function may contribute to aspirin-induced airway hyperresponsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.