Organic-redox initiated polymerization technique based on the co-initiators system comprising benzoyl peroxide and N-phenyldiethanolamine was used at ambient temperature to fabricate pH-responsive hydrogels. The effects of changes in the concentration of the co-initiators system, the ratio in which the co-initiators combined, the type of the polymerization solvent, the pH of the hydrating medium, the concentration of the cross-linking agent based on azo-bond and the pH-sensitive cross-linking agent on the properties of the hydrogels were investigated. Increasing the concentration of the co-initiators system, decreasing the concentration of the two types of cross-linking agents, and replacing DMSO by ethanol as the polymerization solvent resulted in hydrogels with increased equilibrium swelling ratio and increased molecular weight between cross-links at pH 7.4. Increasing the concentration of N-phenyldiethanolamine while keeping the concentration of benzoyl peroxide constant gave hydrogels with increased equilibrium swelling ratios. The equilibrium swelling ratios of the hydrogels at pH 2.0 were not affected by the factors investigated. The polymerization technique may be suitable for the design of drug delivery systems containing thermolabile bioactive agents like peptides and proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.