This is a survey of neural network applications in the real-world scenario. It provides a taxonomy of artificial neural networks (ANNs) and furnish the reader with knowledge of current and emerging trends in ANN applications research and area of focus for researchers. Additionally, the study presents ANN application challenges, contributions, compare performances and critiques methods. The study covers many applications of ANN techniques in various disciplines which include computing, science, engineering, medicine, environmental, agriculture, mining, technology, climate, business, arts, and nanotechnology, etc. The study assesses ANN contributions, compare performances and critiques methods. The study found that neural-network models such as feedforward and feedback propagation artificial neural networks are performing better in its application to human problems. Therefore, we proposed feedforward and feedback propagation ANN models for research focus based on data analysis factors like accuracy, processing speed, latency, fault tolerance, volume, scalability, convergence, and performance. Moreover, we recommend that instead of applying a single method, future research can focus on combining ANN models into one network-wide application.
The era of artificial neural network (ANN) began with a simplified application in many fields and remarkable success in pattern recognition (PR) even in manufacturing industries. Although significant progress achieved and surveyed in addressing ANN application to PR challenges, nevertheless, some problems are yet to be resolved like whimsical orientation (the unknown path that cannot be accurately calculated due to its directional position). Other problem includes; object classification, location, scaling, neurons behavior analysis in hidden layers, rule, and template matching. Also, the lack of extant literature on the issues associated with ANN application to PR seems to slow down research focus and progress in the field. Hence, there is a need for state-of-the-art in neural networks application to PR to urgently address the abovehighlights problems for more successes. The study furnishes readers with a clearer understanding of the current, and new trend in ANN models that effectively addresses PR challenges to enable research focus and topics. Similarly, the comprehensive review reveals the diverse areas of the success of ANN models and their application to PR. In evaluating the performance of ANN models, some statistical indicators for measuring the performance of the ANN model in many studies were adopted. Such as the use of mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), and variance of absolute percentage error (VAPE). The result shows that the current ANN models such as GAN, SAE, DBN, RBM, RNN, RBFN, PNN, CNN, SLP, MLP, MLNN, Reservoir computing, and Transformer models are performing excellently in their application to PR tasks. Therefore, the study recommends the research focus on current models and the development of new models concurrently for more successes in the field.INDEX TERMS Artificial neural networks, application to pattern recognition, feedforward neural networks, feedback neural networks, hybrid models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.