In a renewable energy system, incorporating threedimensional technology in solar power generation takes advantage of the three-dimensional nature of the biosphere so that energy collection occurs in a volume, contrary to what is commonly obtained in planar or flat photovoltaic panel. Three-dimensional photovoltaic technologies are capable of generating more power from the same base area when compared to the conventional flat solar panels. This investigation examines methodologies for computation and analyses the effect of height per unit volume compared with a plain surface arrangement. The results show remarkable increase in the energy generated by the three-dimensional photovoltaic structure over the two-dimensional planar structures.
Electricity generated from a concentrated thermal photovoltaic system can be improved upon for optimum output. This investigation considered the various options of optimising system operation via effec
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.