This study explored the use of coir fibers extracted from coconut husks, an agro-waste material that constitutes sanitation and environmental pollution problems, as a reinforcing element in the production of metakaolin-based geopolymer composites with improved properties. A series of sample formulations were produced with varying coir fiber content (0.5, 1.0, 1.5, and 2.0 percent weight of metakaolin powder). The investigation was conducted using a 10 M NaOH alkaline solution with a 0.24 NaOH:Na2SiO3 mass ratio. Samples were cured for 28 days and tested for bulk density, ultrasonic pulse velocity (UPV), and compressive and flexural strength. Microstructural examinations such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were also performed on samples. Compressive strength values up to 21.25 N/mm2 at 0.5% fiber content and flexural strength values up to 10.39 N/mm2 at 1% fiber content were achieved in this study. The results obtained showed a decreasing bulk density of geopolymer samples (2113 kg/m3 to 2045 kg/m3) with increasing coir fiber content. The geopolymer samples had UPV values varying from 2315 m/s to 2717 m/s. Coir fiber with 0.5–1.0% fiber content can be incorporated into metakaolin-based geopolymers to produce eco-friendly composite materials with improved mechanical properties for sustainable development.
This paper explores the effects of cement stabilization (5, 10, 15 and 20 wt%) on the structural and mechanical properties (compressive/flexural strengths and fracture toughness) of abandoned termite mound soil. The crystal structures and crystallinity of the constituents were determined using X-ray diffraction (XRD), while the microstructure was characterized via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The functional groups were also identified using Fourier transform infra-red spectroscopy (FTIR). The compressive/flexural strengths of the stabilized and un-stabilized termite mound soil were also studied after curing for 7, 14 and 28 days. The fracture toughness mechanism was analyzed with the aid of the R-curve method. Additionally, the underlying deformation and cracking mechanisms are elucidated via in-situ/ex-situ optical and scanning electron microscopy. The stabilized termite mound soil displayed the highest mechanical properties of 13.91 MPa, 10.25 MPa and 3.52 kPa·m1/2 for compressive strength, flexural strength and fracture toughness, respectively. Besides displaying good mechanical properties and being locally available at no cost, renewable and an eco-friendly material, the termite mound soil will contribute to lowering the cost of housing in Sub-Saharan Africa, particularly in Chad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.