Suspended particles flowing through complex porous spaces exhibit clogging mechanisms determined by factors including their size, deformability, and the geometry of the confinement. This study describes the clogging of rigid particles in a microfluidic device made up of parallel microchannels that taper from the inlet to the outlet, where the constriction width is approximately equal to the particle size. This converging geometry summarizes the dynamics of clogging in flow channels with constrictions that narrow over multiple length scales. Our novel approach allows the investigation of suspension flow dynamics in confined systems where clogs are formed both by sieving and bridging mechanisms simultaneously. Here, flow tests are conducted at constant driving pressures for different particle volume fractions, and a power-law decay which appears to be peculiar to the channels’ tapered geometry is observed in all cases. Compared to non-tapered channels, the power-law behavior shows flowrate decay is significantly weaker in tapered channels. This weaker flowrate decay is explained by the formation of discontinuous clogs within each channel. Micrographs of the clogged channels reveal clogs do not grow continuously from their initial positions around the channels’ outlet. Rather, new clogs spanning the width of the channel at their points of inception are successively formed as the cake grows toward the inlet area in each microchannel. The results show changes in particle volume fraction at constant driving pressure affect the clogging rate without impacting the underlying dynamics. Unexpectedly, analyses of the particles packing behavior in the microchannels, and post-clogging permeability of the microfluidic devices, reveal the presence of two distinct regimes of driving pressure, though only a small portion of the total device volume and channels surface area are occupied by clogs, regardless of the particle volume fraction. This novel investigation of discontinuous clogging over multiple particle diameters provides unique insights into additional mechanisms to control flow losses in filtration and other confined systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.