Various damage detection methods have been proposed by several researchers in the past few decades. Amongst them, the efficiency of mode shapes in detecting damage has been demonstrated by many researchers when further processed. In most cases, the processing involves expansion or reduction of the mode shape data. However, vital information that are damage‐prints are often lost during processing of the mode shape data. In addition, most of these processes involve long and complex computation, thus, leading to inaccurate damage identification. In this study, a simple and fast damage identification technique is proposed to identify damage in beam structures. Interval analysis is applied to the mode shapes of a beam structure in the damaged and undamaged states. The interval situations of each of the beam's segment via mode shape are derived to obtain the upper and lower bounds and the derived bounds are compared. To establish a relationship for identify the damaged point, a possibility of damage existence is defined for each segment of the beam structure. The mode shape increment is defined as the increase in the mode shape value. Furthermore, a damage measure index that provide enhance damage information is obtained as the product of the possibility of damage existence and mode shape increment. A numerical model of a simply supported steel beam is applied to demonstrate this method by imposing damage through thickness reduction of elements in segments. In addition, a parametric analysis is carried out to evaluate noise effect by considering varying damage severities and different noise levels. The results showed that this method is simple and provides considerable accurate results.
The increased demand for cement mortar due to rapid infrastructural growth and development has led to an alarming depletion of fine aggregate. This has prompted the need for a more sustainable material as a total/partial replacement for natural fine aggregate. This study proposes the use of tin slag (TS) as a replacement for fine aggregate in concrete to bridge this sustainability gap. TS was used to replace fine aggregate at replacement levels of 0%, 25%, 50%, 75%, and 100% in cement mortar. Fresh and hardened properties of TS mortar were obtained. Flow tests showed that, as the TS quantity and the w/c ratio increased, the mortar flow increased. Similarly, the compressive strength increased as the TS replacement increased up to 50% replacement, after which a decline in strength was observed. However, with the TS replacement of fine aggregate up to 100%, a compressive strength of 6% above control was attained. The morphological features confirm that specimens with TS had a denser microstructure because of its shape characteristics (elongated, irregular, and rough), and, thus, plugged holes better than the control mortar. The natural sand’s contribution to strength was a result of better aggregate hardness as compared to TS. Hence, TS can be used as alternative for fine aggregate in sustainable construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.