The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the grid is subject to changes and stresses due to diverse factors including solar weather, climate, hydrology, and ecology. The emerging interconnected and complex network dependencies make such interactions increasingly dynamic, posing novel risks, and presenting new challenges to manage the coupled human-natural system. This paper provides a survey of models and methods that seek to explore the significant interconnected impact of the electric power grid and interdependent domains. We also provide relevant critical risk indicators (CRIs) across diverse domains that may be used to assess risks to electric grid reliability, including climate, ecology, hydrology, finance, space weather, and agriculture. We discuss the convergence of indicators from individual domains to explore possible systemic risk, i.e., holistic risk arising from cross-domain interconnections. Further, we propose a compositional approach to risk assessment that incorporates diverse domain expertise and information, data science, and computer science to identify domain-specific CRIs and their union in systemic risk indicators. Our study provides an important first step towards datadriven analysis and predictive modeling of risks in interconnected human-natural systems.
The U.S. electrical grid has undergone substantial transformation with increased penetration of wind and solar -forms of variable renewable energy (VRE). Despite the benefits of VRE for decarbonization, it has garnered some controversy for inducing unwanted effects in regional electricity markets. In this study, we examine the role of VRE penetration on the system electricity
Animal-related outages (AROs) are a prevalent form of outages in electrical distribution systems. Animal-infrastructure interactions vary across species and regions, underlining the need to study the animal-outage relationship in more species and diverse systems. Animal activity has been an indicator of reliability in the electrical grid system by describing temporal patterns in AROs. However, these ARO models have been limited by a lack of available species activity data, instead approximating activity based on seasonal patterns and weather dependency in ARO records and characteristics of broad taxonomic groups, e.g., squirrels. We highlight available resources to fill the ecological data gap limiting joint analyses between ecology and energy sectors. Species distribution modeling (SDM), a common technique to model the distribution of a species across geographic space and time, paired with community science data, provided us with species-specific estimates of activity to analyze alongside spatio-temporal patterns of ARO severity. We use SDM estimates of activity for multiple outage-prone bird species to examine whether diverse animal activity patterns were important predictors of ARO severity by capturing existing variation within animal-outage relationships. Low dimensional representation and single patterns of bird activity were important predictors of ARO severity in Massachusetts. However, both patterns of summer migrants and overwintering species showed some degree of importance, indicating that multiple biological patterns could be considered in future models of grid reliability. Making the best available resources from quantitative ecology known to outside disciplines can allow for more interdisciplinary data analyses between ecological and non-ecological systems. This can result in further opportunities to examine and validate the relationships between animal activity and grid reliability in diverse systems.
Power outage prediction is important for planning electric power system response, restoration, and maintenance efforts. It is important for utility managers to understand the impact of outages on the local distribution infrastructure in order to develop appropriate maintenance and resilience measures. Power outage prediction models in literature are often limited in scope, typically tailored to model extreme weather related outage events. While these models are sufficient in predicting widespread outages from adverse weather events, they may fail to capture more frequent, non-weather related outages (NWO). In this study, we explore time series models of NWO by incorporating state-of-the-art techniques that leverage the Prophet model in Bayesian optimization and hierarchical forecasting. After defining a robust metric for NWO (non-weather outage count index, NWOCI), time series forecasting models that leverage advanced preprocessing and forecasting techniques in Kats and Prophet, respectively, were built and tested using six years of daily state- and county-level outage data in Massachusetts (MA). We develop a Prophet model with Bayesian True Parzen Estimator optimization (Prophet-TPE) using state-level outage data and a hierarchical Prophet-Bottom-Up model using county-level data. We find that these forecasting models outperform other Bayesian and hierarchical model combinations of Prophet and Seasonal Autoregressive Integrated Moving Average (SARIMA) models in predicting NWOCI at both county and state levels. Our time series trend decomposition reveals a concerning trend in the growth of NWO in MA. We conclude with a discussion of these observations and possible recommendations for mitigating NWO.
1. Animal-related outages (AROs) are a prevalent form of outages in electrical distribution systems. Animal-infrastructure interactions vary across focal species and regions, underlining the need to study the animal-outage relationship in more species and diverse systems.2. Animal activity has been used as an indicator of reliability in the electrical grid system and to describe temporal patterns in AROs. However, these ARO models have been limited by a lack of available estimates of species activity, instead approximating activity based on seasonal and weather patterns in animal-related outage records and characteristics of broad taxonomic groups, e.g., squirrels.3. We highlight publicly available resources to fill the ecological data gap that is limiting joint analyses between ecology and energy sectors. Species distribution models (SDMs), a common technique to model the distribution of a species across geographic space and time, paired with data sourced from eBird, a community science database for bird observations, provided us with species-specific estimates of activity to model spatio-temporal patterns of AROs. These flexible, species-specific estimates can allow future animal-indicators of grid reliability to be investigated in more diverse regions and ecological communities, providing a better understanding of the variation that exists in animal-outage relationship. 4. AROs were best modeled by accounting for multiple outage-prone species 2 activity patterns and their unique relationships with seasonality and habitat availability.5. Different species were important for modeling outages in different landscapes and seasons depending on their distribution and migration behavior.6. We recommend that future models of AROs include species-specific activity data that account for the diverse spectrum of spatio-temporal activity patterns that outage-prone animals exhibit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.