Numerical simulation of a suspended stirrer within a homogenizing system is performed towards determining the mixing performance of a homogenizer. A two-dimensional finite volume formulation is developed for the cylindrical system that is used for the storage and stirring of biodegradable food waste from eatery centers. The numerical solver incorporates an analysis of the property distribution for viscous food waste in a storage tank, while coupling the impact of mixing on the slurry fluid. Partial differential equations, which describe the conservation of mass, momentum and energy, are applied. The simulation covers the mixing and heating cycles of the slurry. Using carrot-orange soup as the operating fluid (and its thermofluid properties) and assuming constant density and temperature-dependent viscosity, the velocity and temperature field distribution under the influence of the mixing source term are analyzed. A parametric assessment of the velocity and temperature fields is performed, and the results are expected to play a significant role in designing a homogenizer for biodegradable food waste.
Effective pre-treatment of food waste is important to ensure that subsequent treatment in a biogas plant works well. This paper describes a two-dimensional finite volume model for the design of a homogenizing system for bio-degradable food waste from eatery centers. The numerical solver incorporates the analysis of the property distribution for food waste slurry in a storage tank, while coupling the impact of mixing on the slurry fluid. The partial differential equations which describe the conservation of mass, momentum and energy are simulated. The simulation covers the mixing and heating cycles of the slurry. The slurry fluid is exposed to a pretreatment temperature of 60 0 C. With carrot-orange soup as the studied food waste, constant density and a temperature dependent viscosity are assumed. The predicted results for velocity, pressure and temperature distribution are discussed and a source term for mixing is proposed. OPEN ACCESS 2This assessment of distribution of velocity and temperature is expected play a role in future studies and designs of a homogenizer for biodegradable food waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.