Data center network (DCN) is the core of cloud computing and accounts for 40% energy spend when compared to cooling system, power distribution and conversion of the whole data center (DC) facility. It is essential to reduce the energy consumption of DCN to ensure energy-efficient (green) data center can be achieved. An analysis of DC performance and efficiency emphasizing the effect of bandwidth provisioning and throughput on energy proportionality of two most common switchcentric DCN topologies: three-tier (3T) and fat tree (FT) based on the amount of actual energy that is turned into computing power are presented. Energy consumption of switch-centric DCNs by realistic simulations is analyzed using GreenCloud simulator. Power-related metrics were derived and adapted for the information technology equipment processes within the DCN. These metrics are acknowledged as subset of the major metrics of power usage effectiveness and data center infrastructure efficiency, known to DCs. This study suggests that although in overall FT consumes more energy, it spends less energy for transmission of a single bit of information, outperforming 3T.
Internet traffic data such as the number of transmitted packets and time spent on the transmission of Internet protocols (IPs) have been shown to exhibit self-similar property which can contain the long memory property, particularly in a heavy Internet traffic. Simulating this type of dataset is an important aspect of delay avoidance planning, especially when trying to mimic real-life processing of packets on the Internet. Most of the existing procedures often assumed the process follows a Gaussian distribution, and thus long memory processes such as Fractional Brownian Motion (FBM) and Fractional Gaussian Noise (FGN) among others are used. These approaches often result in estimation errors arising from the use of inappropriate distribution. However, it has been established that the distribution of Internet processes are heavy-tailed. Therefore, in this paper, a new method that is capable of generating heavy-tailed self-similar traffic is proposed based on the first-order autoregressive AR (1) process. The proposed method is compared with some of the existing methods at varying values of the self-similar index and sample sizes. The imposed self-similarity indices were estimated using the Range/Standard deviation statistic (R/S). Performance analysis was achieved using the absolute percentage errors. The results showed that the proposed method has a lower average error when compared with other competing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.