Oil palm mesocarp fibre obtained from a palm oil processing mill was washed with detergent and water to remove the oil and sun-dried to enhance good adhesion to Linear Low Density Polyethylene (LLDPE). The fibre was pulverized and filtered through a sieve of pore size 300 microns. The Oil Palm Mesocarp Fibre Reinforced Thermoplastic (OPMFRT) was produced with a form of hand lay-up method and varying fibres weight ratio in the matrix from 5 wt% to 25 wt% in steps of 5 wt%. Tensile test was carried out to determine the tensile strength, tensile modulus, and elongation at break of the material. The hardness and impact strength of the composite were also determined. The results showed that tensile modulus and hardness of the OPMFRT increased by 50% and 24.56%, respectively, while tensile strength, impact strength, and percentage elongation of the OPMFRT decreased by 36.78%, 39.07%, and 95.98%, respectively, as fibre loading increased from 5 wt% to 25 wt%. The study concluded that the application of the OPMFRT developed should be restricted to areas demanding high rigidity and wear resistance.
Water-sachets made from low density polyethylene (LDPE) form a bulk of plastic wastes which creates environmental challenges, while certain species of plants like Imperata cylindrica constitute large portion of weeds on farm lands. As a technological approach to the reduction and utilization of these materials, composites of Imperata cylindrica (IC) particulate and synthetic polymer (from recycled waste water-sachets) were produced and evaluated for several mechanical and physical properties. The production of the composites and testing were done using the standard methods available in the literature. The results showed an increase in tensile modulus, hardness, impact strength, and water absorption of the composite in comparison with unreinforced polymer, as the IC particulate loading increased from 5 wt% to 30 wt%. However, there was a decrease in tensile strength, percentage elongation at break and density of the composite as the particulate loading increased from 5 wt% to 30 wt%. The combination of the recycled waste water-sachets and IC particulate is really promising for composites development. This creates opportunities to reduce LDPE wastes and add economic importance to an otherwise agricultural menace. It will mean creating an economic value from "wastes".
Composites of recycled low-density polyethylene obtained from waste water-sachets and imperata cylindrica were produced with particulate and long-fibre unidirectional mat reinforcements. Comparison was made of the tensile and impact properties resulting from the use of the different reinforcement forms at 10 wt% ratio in the matrix. The results obtained from the tests carried out revealed that tensile strength, tensile modulus, elongation at break and impact strength of the composite with the long-fibre mat reinforcement were better than those of the one composite with the particulate reinforcement. The better performance observed in the long-fibre mat reinforcement could be attributed to the retention of the toughness and stiffness of the imperata cylindrica stem in this form of reinforcement, which is lost after the stem strands are pulverized into particles. Imperata cylindrica stem, as a natural fibre reinforcement for polymetric material is, therefore, recommended in the long-fibre mat form. The combination of these otherwise challenging resources in composite materials development will add economic value to them and help to reduce the nvironmental menace they present.
The use of agricultural wastes and natural materials in new technologies is a novel subject. Consequently, an attempt has been made to formulate a synthetic fluid using an organic water, Water Extract from Fermented Ground Maize (WEFGM) and compare its performance with water-based sample in turning operation using a mild steel as workpiece. Two samples of synthetic fluids were formulated from each of deionized WEFGM, ordinary WEFGM and deionized water as base-fluids at two composition (5 and 10%vol) levels of selected additives. The results of experimental analysis of heat transfer properties of these synthetic fluids exist, hence the need to ascertain the actual performance output. Temperature-Time Gradient (TTG) which is a rate of temperature drop (heat withdrawn) from the work zone was used as evaluation parameters. The result showed that deionized WEFGM is the most efficient of the entire samples at both compositions with an average TTG of 3.61 and 2.16 °C/min at 10 and 5% additive concentration respectively. At lower additive concentration which is more economically advantageous, the performance rating is deionized WEFGM>>WEFGM>>deionized Water. This implies that WEFGM is more effective than water as a base fluid for synthetic fluid in performance as it has been previously so reported in properties. Meanwhile, T-test statistical analysis (using IBM SPSS 23) shows that there is highly significant difference in TTG at each time of application of individual fluid (p<0.05). However, TTG of one fluid sample is not significantly different from the other (p>0.05) implying that the fluids can all work as coolants and relatively have comparable performance output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.