Heavy materials handling requires a sophisticated tool for efficient and optimum operations. In recent times, gantry cranes are considered as a dependable choice in terms of handling capacity, effectiveness, timeliness and safety. However, positioning of a trolley to the desired set point as fast as possible within minimum time without overshoot and payload induced oscillation have remained obstacles in crane dynamic control. Several control algorithms have been proposed, tested and implemented based on classical control. Recently, vision control has been introduced in the field of mechatronics as a bridging gap with little or no impact. In this paper, a vision based software control model is proposed such that webcam serves as a capturing sensor and the National Instrument LabVIEW is used as a programming tool for both image processing and crane control. Subsequently, the results of the proposed algorithm are experimentally validated by step increase in the trolley position. According to the results analysis, it is evident that the webcam performance is at an optimum level when compared with the installed sensor in positioning the trolley and minimizing the payload oscillation.
The process industry has always been faced with the challenging tasks of determining the overall unavailability of safety instrumented systems (SISs). The unavailability of the safety instrumented system is quantified by considering the average probability of failure on demand. To mitigate these challenges, the IEC 61508 has established analytical formulas for estimating the average probability of failure on demand for K-out-of-N (KooN) architectures. However, these formulas are limited to the system with identical components and this limitation has not been addressed in many researches. Hence, this paper proposes an unavailability model based on Markov Model for different redundant system architectures with non-identical components and generalised formulas are established for non-identical k-out-of-n and n-out-of-n configurations. Furthermore, the proposed model incorporates undetected failure rate and evaluates its impact on the unavailability quantification of SIS. The accuracy of the proposed model is verified with the existing unavailability methods and it is shown that the proposed approach provides a sufficiently robust result for all system architectures.
The inimitable features of multivariable, instability, non-minimum phase and non-linearity has established an inverted pendulum system as benchmark to investigate and test new emerging control schemes. In this paper, the objectives are to explicitly model the system dynamics of an inverted pendulum and implement different control algorithms that will stabilize the pendulum in the upright vertical position by controlling the input force applied to the cart in the horizontal position. The mathematical model is derived based on the energy property of Lagrange approach and the control algorithms are expanded on the derived mathematical model in MATLAB-SIMULINK environment. Hence, we proposed four different controls algorithms proportional-integral-derivative controller (PID), pole placement feedback controller (PPFC), linear quadratic regulator controller (LQR) and linear quadratic regulator with estimator (LQR+Estimator) for the control of the linearized inverted pendulum system. The study compares the proposed control algorithms in terms of system response and performance.
Wireless communication had transformed the mode of human interactions in recent times, distance is no longer a barrier as messages can be sent several miles apart within few seconds. In addition, the pervasive adoption of mobile communication system had engendered researchers to device new and effective technologies to enhance Quality of Service (QOS) offered by service providers. This is obvious in the deployment of trending mobile generations such as 2G, 3G and 4G systems for high speed voice and data services. Nevertheless, these systems are still embattled with unpredictable impairment such as noise in fading channels that impedes optimal system performance. In this paper, performance evaluation of 16–Quadrature Amplitude Modulation (16-QAM) system over Additive White Gaussian Noise (AWGN) and Rayleigh Channels using simulated and theoretical approach is presented. Theoretical mathematical expression for Symbol Error Rate(SEP) was derived, and simulation was setup using MATLAB/SIMULINK for performance evaluation. The results show that SEP is dependent on signal-noise-ratio (SNR) for both methods. However, SEP wasvery high for Rayleigh channel as compared with AWGN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.