Cement is one of the most produced materials globally. Population growth and urbanization cause an increased demand for the cement needed for expanding infrastructures. As a result of this circumstance, the cement industry must find the optimum compromise between increasing cement production and reducing the negative environmental impact of that production. Since cement production uses a lot of energy, resources and raw materials, it is essential to assess its environmental impact and determine methods for the sector to move forward in sustainable ways. This paper uses an integrated life cycle assessment (LCA) and a system dynamics (SDs) model to predict the long-term environmental impact and future dynamics of cement production in South Africa. The first step used the LCA midpoint method to investigate the environmental impact of 1 kg of Portland cement produced in South Africa. In the cement production process, carbon dioxide (CO2), nitrogen oxides (NOx), sulphur dioxide (SO2), methane (CH4) and particulate matter (PM) were the major gases emitted. Therefore, the LCA concentrated on the impact of these pollutants on global warming potential (GWP), ozone formation, human health, fine particulate matter formation and terrestrial acidification. The system dynamics model is used to predict the dynamics of cement production in South Africa. The LCA translates its results into input variables into a system dynamics model to predict the long-term environmental impact of cement production in South Africa. From our projections, the pollutant outputs of cement production in South Africa will each approximately double by the year 2040 with the associated long-term impact of an increase in global warming. These results are an important guide for South Africa’s future cement production and environmental impact because it is essential that regulations for cement production are maintained to achieve long-term environmental impact goals. The proposed LCA–SD model methodology used here enables us to predict the future dynamics of cement production and its long-term environmental impact, which is the primary research objective. Using these results, a number of policy changes are suggested for reducing emissions, such as introducing more eco-blended cement productions, carbon budgets and carbon tax.
The cement industry confronts significant challenges in raw materials, energy demands, and CO2 emissions reduction, which are global and local environmental concerns. Life cycle assessment (LCA) has been used in many studies to assess the environmental impact of cement production and investigate ways to improve environmental performance. This study aims to analyse the environmental impact of Portland cement (CEM I) on the South African cement industry using the life cycle impact assessment (LCIA), based on the Recipe 2016 v 1.04 midpoint method. The study was conducted using data modeled after the South African cement plant, considered a cradle-to-gate system boundary, starting from the extraction of the raw material to the cement production process that produces cement as the main product. The data were obtained from the Ecoinvent database v3.7.1, integrated with SimaPro 9.1.1. software, used to assess the impact categories. For simplicity, the study merged the entire production process into five processes, i.e., raw materials usage, fuel consumption, clinker production, transportation and electricity. The impact categories of the five production stages were assessed using the LCA methodology. The impact categories investigated were classified into three categories: atmospheric, resource depletion and toxicity categories. According to the results, clinker production and electricity usage stages contribute the most to atmospheric impact (global warming, which causes climatic change due to high CO2 emissions), followed by raw materials and fuel consumption, contributing to the toxicity and resource depletion impact category. These stages contribute more than 76% of CO2 eq. and 93% of CFC-11 eq. In the midpoint method, CO2 is the most significant pollutant released. Therefore, replacing fossil fuels with alternative fuels can reduce fossil fuel use and the atmospheric impact of cement kilns.
Cement has long been recognized as an energy- and emission-intensive construction material. Cement production has recently experienced significant growth despite its high energy consumption, resource usage, and carbon emissions. This study aims to assess and compare the life cycle assessment (LCA) of traditional Portland cement (CEM I) to those of three blended cement types (CEM II/B-L, CEM II/B-V, and CEM III/A), which assume mature technologies for reducing carbon emissions in South Africa, using LCA in compliance with ISO/TS 14071 and 14072. As its scope, the study employs the “cradle to gate” method, which considers the raw materials, fuel usage, electricity, transportation, and clinkering stages, using 1 kg of cement as the functional unit. The LCA analyses were performed using SimaPro 9.1.1.1 software developed by PRé Consultants, Amersfoort, Netherlands and impact assessments were conducted using the ReCiPe 2016 v1.04 midpoint method in order to compare all 18 impact categories of 1 kg of cement for each cement type. The assessment results show reductions in all impact categories, ranging from 7% in ozone depletion and ionizing radiation (CEM II/B-L) to a 41% reduction in mineral resource scarcity (CEM III/A). The impacts of global warming were reduced by 14% in the case of CEM II/B-L, 29% in the case of CEM II/B-V and 35% in the case of CEM III/A. The clinkering process was identified as the primary cause of atmospheric impacts, while resource depletion impacts were attributed to raw materials, fuels, and electricity processes, and toxicity impacts were primarily caused by raw materials. Alternative materials, like fly ash and ground granulated blast furnace slag (GGBFS), can significantly help to reduce environmental impacts and resource consumption in the cement industry.
Carbon nanospheres (CNS) were synthesized successfully from palm kernel fiber activated carbon. Palm kernel fiber (PKF) which is an agro-waste was carbonized followed by physical activation with CO2, then go along with treated utilizing ethanol vapor at temperature of 700 °C, 850 °C and 1000 °C. The temperature effect on developed synthesized nanomaterials was investigated using scanning Fourier transform infrared microscopy (FTIR), electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), x-ray diffraction (XRD), and thermo-gravimetric analysis (TGA). The temperatures were varied from 700 °C to 1000 °C with intervals of 150 °C. The SEM results showed highest purity and the largest number of carbon-nanospheres being formed at a synthesis temperature of 1000 °C. The results indicate that CNS diameter, growth rate, crystallinity and density can be affected by increase in temperature. The CNS diameters were found to increase when the synthesis temperature increased. The results of the TEM showed that, within the temperature range of 700 °C to 1000 °C, the CNSs diameter increased continuously from 3 nm to 65 nm. XRD analysis showed that the synthesized carbon nanomaterials were amorphous. In general, the results showed that the synthesis temperature affects the diameter, density and crystallinity of carbon nanomaterials. The synthesis temperature of 1000 °C appears to be the ideal temperature for high quality and high yield CNSs production. The presence of iron (Fe) in the EDX results showed that such synthesized CNSs can be used as reinforcement materials in the manufacture of automobile brake pads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.