Cement clinkerisation is the major energy-consuming process in cement manufacturing due to the high-temperature requirement. In this paper, energy data including specific energy consumption, forms, and types of energy used at different units of cement manufacturing processes were analyzed and compared for effectiveness, availability, cost, environmental, and health impact. Data from three different cement industries in Nigeria labeled as A, B, and C were used for the analysis in this study. The results of this research work established that coal is the cheapest energy source but environmental issues exonerate it from being the choice energy source. LPFO and Natural gas give better production output while minimizing pollution and health issues. When benchmarked against each other, Factory B was found to be the most energy-efficient in terms of output and cost of production. Although coal is cheaper compared to fuel oil and supposed to contribute a share of fuel used in cement industries, the industries are moving towards the use of alternative and conventional fuels to reduce environmental pollution. It is therefore recommended that deliberate effort to achieve appreciable energy-efficient levels should be the priorities of the cement industries in Nigeria.
In this study the process flow diagram for the cement production was simulated using Aspen HYSYS 8.8 software to achieve high energy optimization and optimum cement flow rate by varying the flow rate of calcium oxide and silica in the clinker feed. Central composite Design (C.C.D) of Response Surface Methodology was used to design the ten experiments for the simulation using Design Expert 10.0.3. Energy efficiency optimization is also carried out using Aspen Energy Analyser. The optimum cement flow rate is found from the contour plot and 3D surface plot to be 47.239 tonnes/day at CaO flow rate of 152.346 tonnes/day and the SiO2 flow rate of 56.8241 tonnes/day. The R2 value of 0.9356 determined from the statistical analysis shows a good significance of the model. The overall utilities in terms of energy are found to be optimised by 81.4% from 6.511 x 107 kcal/h actual value of 1.211 x 107 kcal/h with 297.4 tonnes/day the carbon emission savings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.