A growing number of jurisdictions are passing ambitious clean energy policies. Yet few studies have accounted for natural and agricultural land impacts of low-carbon pathways and how environmental siting constraints affect electricity costs and technology choices. To address this gap, we developed an integrated land-energy planning framework to examine the land use trade-offs of renewable energy development required to achieve ambitious clean energy goals, using the state of California as a case study. Using high-resolution ecological and agricultural datasets for 11 Western U.S. states, we modeled environmentally-constrained onshore wind, solar photovoltaic, and geothermal potential and used an electricity capacity expansion model to build generation portfolios for 2050. Here we show that California can meet its targets, but the technology mix, spatial build-out, and system costs are sensitive to land protections and availability of out-of-state renewable resources. Results suggest that failure to consider land availability in energy planning could increase uncertainties, environmental impacts, and risks in meeting subnational climate targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.