This article describes the innovative photovoltaic powered seasonal thermal storage—PVPSTS system. It was used in the design of a plus-energy detached single-family house with a usable area of 98 m2. This area meets the requirements of the latest building regulations in Poland. The building, with the innovative HVAC installation, was subjected to energy analysis, and a numerical model was also developed. The model was tested based on TMY data for the location of Wroclaw, Poland. Analysis of the results allowed the authors to learn the specifics of the operation of the system throughout the year and to also define its efficiency. The required size of the storage stack was determined to be 1.6 × 1.6 × 0.3 m. The photovoltaic installation, which was integrated with the roof, can produce 48 GJ of electricity per year. This is five to six times more than the building’s heating needs, and any excess energy can be exported to the power grid.
The article analyzes the impact of different filling materials for a seasonal heat storage stack that can be used to heat an innovative plus-energy house in Poland. The storage medium is of the sensible heat type. Twelve filling materials and nine thermal insulation materials readily available in the local market were analyzed. Seven variants comprising a combination of the stack’s filling and thermal insulation materials were selected and then grouped into three classes: advanced, medium, and simple technology. Using a mathematical model, energy analysis of the year-round operation of the HVAC installation in the analyzed building was performed for each of the seven variants. The conducted analyses revealed that for each combination of filling and thermal insulation material, there is an optimal maximum temperature of the stack, at which the volume of the stack is the smallest or its costs are the lowest. The obtained results were evaluated to determine the ideal variant combination, and two solutions were recommended: clinker brick and fireplace wool, for which the stack volume is 23 m3 and the total cost is EUR 12,500; and concrete block and glass wool, for which the stack volume is 27 m3 and the total cost is EUR 1700.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.