Lung segmentation serves to ensure that all the parts of the lungs are considered during pulmonary image analysis by isolating the lung from the surrounding anatomy in the image. Research has shown that computed tomography (CT) images greatly improves the accuracy of the diagnosis obtained by a physician for lung cancer detection. Therefore, inspired by the success of Graph Cut in image segmentation and given that manual methods of analysing CT images are tedious and timeconsuming, an automatic segmentation method based on Graph Cut is proposed which makes use of a distance-constrained energy (DCE). Graph Cut produces globally optimal solutions by modelling the image data and spatial relationship among the pixels. However, several anatomical regions in the thoracic CT image have pixel intensity values similar to the lungs, leading to results where the lung tissue and all these regions are included in the segmentation result. The global energy function is, therefore, further constrained by using the distance of pixels from a coarsely segmented region of the CT image containing the lungs. The proposed method, utilising the DCE function, shows significant improvement over using the unconstrained energy function in segmenting the lungs from the CT images using Graph Cut.
This paper presents a novel candidate generation algorithm for pedestrian detection in infrared surveillance videos. The proposed method uses a combination of histogram specification and iterative histogram partitioning to progressively adjust the dynamic range and efficiently suppress the background of each video frame. This pairing eliminates the general-purpose nature associated with histogram partitioning where chosen thresholds, although reasonable, are usually not suitable for specific purposes. Moreover, as the initial threshold value chosen by histogram partitioning is sensitive to the shape of the histogram, specifying a uniformly distributed histogram before initial partitioning provides a stable histogram shape. This ensures that pedestrians are present in the image at the convergence point of the algorithm. The performance of the method is tested using four publicly available thermal datasets. Experiments were performed with images from four publicly available databases. The results show the improvement of the proposed method over thresholding with minimum-cross entropy, the robustness across images acquired under different conditions, and the comparable results with other methods in the literature.
This article presents a semi-automatic algorithm that can detect pedestrians from the background in thermal infrared images. The proposed method is based on the powerful Graph Cut optimisation algorithm which produces exact solutions for binary labelling problems. An additional term is incorporated into the energy formulation to bias the detection framework towards pedestrians. Therefore, the proposed method obtains reliable and robust results through user-selected seeds and the inclusion of motion constraints. An additional advantage is that it enables the algorithm to generalise well across different databases. The effectiveness of our method is demonstrated on four public databases and compared with several methods proposed in the literature and the state-of-the-art. The method obtained an average precision of 98.92% and an average recall of 99.25% across the four databases considered and outperformed methods which made use of the same databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.