Huntington's disease is a neurodegenerative disorder associated with the expansion of the polyglutamine tract in the exon-1 domain of the huntingtin protein (htte1). Above a threshold of 37 glutamine residues, htte1 starts to aggregate in a nucleation-dependent manner. A 17-residue N-terminal fragment of htte1 (N17) has been suggested to play a crucial role in modulating the aggregation propensity and toxicity of htte1. Here, we identify N17 as a potential target for novel therapeutic intervention using the molecular tweezer CLR01. A combination of biochemical experiments and computer simulations shows that binding of CLR01 induces structural rearrangements within the htte1 monomer and inhibits htte1 aggregation, underpinning the key role of N17 in modulating htte1 toxicity.
The transgenic mouse model R6/2 exhibits Huntington’s disease (HD)-like deficits and basic pathophysiological similarities. We also used the pheochromocytoma-12 (PC12)-cell-line-model to investigate the effect of laquinimod on metabolic activity. Laquinimod is an orally administered immunomodulatory substance currently under development for the treatment of multiple sclerosis (MS) and HD. As an essential effect, increased levels of BDNF were observed. Therefore, we investigated the therapeutic efficacy of laquinimod in the R6/2 model, focusing on its neuroprotective capacity. Weight course and survival were not influenced by laquinimod. Neither were any metabolic effects seen in an inducible PC12-cell-line model of HD. As a positive effect, motor functions of R6/2 mice at the age of 12 weeks significantly improved. Preservation of morphologically intact neurons was found after treatment in the striatum, as revealed by NeuN, DARPP-32, and ubiquitin. Biochemical analysis showed a significant increase in the brain-derived neurotrophic factor (BDNF) level in striatal but not in cortical neurons. The number of mutant huntingtin (mhtt) and inducible nitric oxide synthase (iNOS) positive cells was reduced in both the striatum and motor cortex following treatment. These findings suggest that laquinimod could provide a mild effect on motor function and striatal histopathology, but not on survival. Besides influences on the immune system, influence on BDNF-dependent pathways in HD are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.