The paper analyzes the configuration, design and operation of multi-MW grid connected solar PV systems with practical test cases provided by a 10MW field development. In order to improve the capacity factor, the PV system operates at its maximum power point during periods of lower irradiance, and the power output is limited to a rated value at high irradiance. The proposed configuration also incorporates a utility scale battery energy storage system (BESS) connected to the grid through an independent inverter and benefits of the experience gained with a 1MW 2MWh BESS large demonstrator. The BESS power smoothing and frequency regulation capabilities are illustrated though combined theoretical and experimental studies. The behavior of the grid connected PV and BESS combined system is studied using a modified IEEE 14-bus test system implemented in PSCAD T M /EMTDC T M. The paper also includes a sizing exercise for energy storage in order to provide dispatchable PV power.
The multi-megawatt grid connected photovoltaic (PV) system studied in the paper includes parallel arrays and power electronic units, each with their own DC-DC and DC-AC converters. In one configuration, the DC-AC converters of adjacent parallel sections are connected in cascade, in order to effectively operate as a multilevel inverter, thereby reducing the filtering requirements. Grid voltage oriented control is employed for inverters and a battery is incorporated for energy storage and performance improvement. Modeling is performed with the PSCAD/EMTDC software, such that both the power electronics components, controls and subsystem aspects, and the electric grid power system issues, can be studied during steady-state and transient operation. The system simulation is demonstrated on a modified IEEE 14-bus test case.
Significant changes in conventional generator operation and transmission system planning will be required to accommodate increasing solar photovoltaic (PV) penetration. There is a limit to the maximum amount of solar that can be connected in a service area without the need for significant upgrades to the existing generation and transmission infrastructure. This study proposes a framework for analyzing the impact of increasing solar penetration on generation and transmission networks while considering the responses of conventional generators to changes in solar PV output power. Contrary to traditional approaches in which it is assumed that generation can always match demand, this framework employs a detailed minute-to-minute (M-M) dispatch model capable of capturing the impact of renewable intermittency and estimating the over- and under-generation dispatch scenarios due to solar volatility and surplus generation. The impact of high solar PV penetration was evaluated on a modified benchmark model, which includes generators with defined characteristics including unit ramp rates, heat rates, operation cost curves, and minimum and maximum generation limits. The PV hosting capacity, defined as the maximum solar PV penetration the system can support without substantial generation imbalances, transmission bus voltage, or thermal violation was estimated for the example transmission circuit considered. The results of the study indicate that increasing solar penetration may lead to a substantial increase in generation imbalances and the maximum solar PV system that can be connected to a transmission circuit varies based on the point of interconnection, load, and the connected generator specifications and responses.
Typically, solar inverters curtail or "clip" the available power from the PV system when it exceeds the maximum ac capacity. This paper discusses a battery system connected to the dc-link of an inverter to recuperate this PV energy. Contrary to conventional approaches, which employ two dc-dc converters, one each for the battery and solar PV system, the proposed configuration utilizes a single dc-dc converter capable of simultaneously operating as a charge controller and a maximum power point tracking (MPPT) tracking device. In addition to improving the overall system capacity factor, increasing the conversion efficiencies and ensuring MPPT stability, the proposed configuration offers a simple solution for adding energy storage to existing PV installations. With this configuration, the excess power that will otherwise be curtailed due to inverter rating limitations is stored in the battery and supplied to the grid during periods of reduced irradiance. Moreover, a systematic methodology for sizing a dc-bus connected battery to minimize total PV energy curtailed was developed using an annual PV generation profile at the Louisville Gas and Electric and Kentucky Utilities (LG&E and KU) E.W. Brown solar facility at Kentucky. The detailed behavior of the proposed system and its power electronics controls and operations were validated with case studies developed in PSCAD T M /EMTDC T M for variable power generation and PV output power smoothing.
Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.