Cancer immunotherapy is exhibiting great promise as a new therapeutic modality for cancer treatment. However, immunotherapies are limited by the inability of some tumors to provoke an immune response. These...
Macrophages play a diverse, key role in many pathologies, including inflammatory diseases, cardiovascular diseases, and cancer. However, many therapeutic strategies targeting macrophages suffer from systemic off-target toxicity resulting in notoriously narrow therapeutic windows. To address this shortcoming, the development of poly(propylene sulfide)-b-poly(methacrylamidoglucopyranose) [PPS-b-PMAG] diblock copolymer-based nanoparticles (PMAG NPs) capable of targeting macrophages and releasing drug in the presence of reactive oxygen species (ROS) is reported. PMAG NPs have desirable physicochemical properties for systemic drug delivery, including slightly negative surface charge, ≈100 nm diameter, and hemo-compatibility. Additionally, due to the presence of PPS in the NP core, PMAG NPs release drug cargo preferentially in the presence of ROS. Importantly, PMAG NPs display high cytocompatibility and are taken up by macrophages in cell culture at a rate ≈18-fold higher than PEGMA NPs-NPs composed of PPS-b-poly(oligoethylene glycol methacrylate). Computational studies indicate that PMAG NPs likely bind with glucose transporters such as GLUT 1/3 on the macrophage cell surface to facilitate high levels of internalization. Collectively, this study introduces glycopolymeric NPs that are uniquely capable of both receptor-ligand targeting to macrophages and ROS-dependent drug release and that can be useful in many immunotherapeutic settings.
Traditional approaches to vaccines use whole organisms to trigger an immune response, but they do not typically generate robust cellular-mediated immunity and have various safety risks. Subunit vaccines composed of proteins and/or peptides represent an attractive and safe alternative to whole organism vaccines, but they are poorly immunogenic. Though there are biological reasons for the poor immunogenicity of proteins and peptides, one other key to their relative lack of immunogenicity could be attributed to the poor pharmacokinetic properties of exogenously delivered proteins and peptides. For instance, peptides often aggregate at the site of injection and are not stable in biological fluids, proteins and peptides are rapidly cleared from circulation, and both have poor cellular internalization and endosomal escape. Herein, we developed a delivery system to address the lack of protein immunogenicity by overcoming delivery barriers as well as codelivering immune-stimulating adjuvants. The glycopolymeric nanoparticles (glycoNPs) are composed of a dual-stimuli-responsive block glycopolymer, poly[2-(diisopropylamino)ethyl methacrylate]-b-poly[(pyridyl disulfide ethyl methacrylate)-co-(methacrylamidoglucopyranose)] (p[DPAb-(PDSMA-co-MAG)]). This polymer facilitates protein conjugation and cytosolic release, the pH-responsive release of lipophilic adjuvants, and pH-dependent membrane disruption to ensure cytosolic delivery of antigens. We synthesized p[DPA-b-(PDSMA-co-MAG)] by reversible addition−fragmentation chain transfer (RAFT) polymerization, followed by the formation and physicochemical characterization of glycoNPs using the p[DPA-b-(PDSMA-co-MAG)] building blocks. These glycoNPs conjugated the model antigen ovalbumin (OVA) and released OVA in response to elevated glutathione levels. Moreover, the glycoNPs displayed pH-dependent drug release of the model hydrophobic drug Nile Red while also exhibiting pH-responsive endosomolytic behavior as indicated by a red blood cell hemolysis assay. GlycoNPs coloaded with OVA and the toll-like receptor 7/8 (TLR-7/8) agonist Resiquimod (R848) activated DC 2.4 dendritic cells (DCs) significantly more than free OVA and R848 and led to robust antigen presentation of the OVA epitope SIINFEKL on major histocompatibility complex I (MHC-I). In sum, the dual-stimuliresponsive glycopolymer introduced here overcomes major protein and peptide delivery barriers and could vastly improve the immunogenicity of protein-based vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.