ABSTRACT. This paper reports the use of powdered activated carbon (PAC) and raw coal fly ash (RFA) in the removal of eosin dye from aqueous solution in batch processes. Operational parameters such as contact time, initial dye concentration, pH and temperature were investigated. Adsorption equilibrium was established in 120 min for the two adsorbents. Langmuir and Freundlich isotherms were used to fit the adsorption data. Langmuir model gave the best fit in both cases. The adsorption capacities of PAC and RFA were found to be 62.28 mg/g and 43.48 mg/g, respectively. The highest percentage of eosin dye removal for both PAC (98%) and RFA (90%) was observed at pH 2. Pseudo first-order and pseudo second-order kinetic models were used to fit the adsorption data. Pseudo second-order kinetic model gave the best description of the adsorption of eosin dye onto the two adsorbents. Thermodynamic parameters, ∆H 0 , ∆S 0 and ∆G 0 confirmed the physical nature, spontaneity and the endothermic nature of the adsorption process. A regeneration technique and a process calculation for evaluating the adsorbent dose required were carried out. This study has shown that RFA is a good alternative adsorbent in the removal of eosin dye from aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.