Purpose of Review Despite current rehabilitative strategies, stroke remains a leading cause of disability in the USA. There is a window of enhanced neuroplasticity early after stroke, during which the brain’s dynamic response to injury is heightened and rehabilitation might be particularly effective. This review summarizes the evidence of the existence of this plastic window, and the evidence regarding safety and efficacy of early rehabilitative strategies for several stroke domain-specific deficits. Recent Findings Overall, trials of rehabilitation in the first 2 weeks after stroke are scarce. In the realm of very early mobilization, one large and one small trial found potential harm from mobilizing patients within the first 24 h after stroke, and only one small trial found benefit in doing so. For the upper extremity, constraint-induced movement therapy appears to have benefit when started within 2 weeks of stroke. Evidence for non-invasive brain stimulation in the acute period remains scant and inconclusive. For aphasia, the evidence is mixed, but intensive early therapy might be of benefit for patients with severe aphasia. Mirror therapy begun early after stroke shows promise for the alleviation of neglect. Novel approaches to treating dysphagia early after stroke appear promising, but the high rate of spontaneous improvement makes their benefit difficult to gauge. Summary The optimal time to begin rehabilitation after a stroke remains unsettled, though the evidence is mounting that for at least some deficits, initiation of rehabilitative strategies within the first 2 weeks of stroke is beneficial. Commencing intensive therapy in the first 24 h may be harmful.
ImportanceFor walking rehabilitation after stroke, training intensity and duration are critical dosing parameters that lack optimization.ObjectiveTo assess the optimal training intensity (vigorous vs moderate) and minimum training duration (4, 8, or 12 weeks) needed to maximize immediate improvement in walking capacity in patients with chronic stroke.Design, Setting, and ParticipantsThis multicenter randomized clinical trial using an intent-to-treat analysis was conducted from January 2019 to April 2022 at rehabilitation and exercise research laboratories. Survivors of a single stroke who were aged 40 to 80 years and had persistent walking limitations 6 months or more after the stroke were enrolled.InterventionsParticipants were randomized 1:1 to high-intensity interval training (HIIT) or moderate-intensity aerobic training (MAT), each involving 45 minutes of walking practice 3 times per week for 12 weeks. The HIIT protocol used repeated 30-second bursts of walking at maximum safe speed, alternated with 30- to 60-second rest periods, targeting a mean aerobic intensity above 60% of the heart rate reserve (HRR). The MAT protocol used continuous walking with speed adjusted to maintain an initial target of 40% of the HRR, progressing up to 60% of the HRR as tolerated.Main Outcomes and MeasuresThe main outcome was 6-minute walk test distance. Outcomes were assessed by blinded raters after 4, 8, and 12 weeks of training.ResultsOf 55 participants (mean [SD] age, 63 [10] years; 36 male [65.5%]), 27 were randomized to HIIT and 28 to MAT. The mean (SD) time since stroke was 2.5 (1.3) years, and mean (SD) 6-minute walk test distance at baseline was 239 (132) m. Participants attended 1675 of 1980 planned treatment visits (84.6%) and 197 of 220 planned testing visits (89.5%). No serious adverse events related to study procedures occurred. Groups had similar 6-minute walk test distance changes after 4 weeks (HIIT, 27 m [95% CI, 6-48 m]; MAT, 12 m [95% CI, −9 to 33 m]; mean difference, 15 m [95% CI, −13 to 42 m]; P = .28), but HIIT elicited greater gains after 8 weeks (58 m [95% CI, 39-76 m] vs 29 m [95% CI, 9-48 m]; mean difference, 29 m [95% CI, 5-54 m]; P = .02) and 12 weeks (71 m [95% CI, 49-94 m] vs 27 m [95% CI, 3-50 m]; mean difference, 44 m [95% CI, 14-74 m]; P = .005) of training; HIIT also showed greater improvements than MAT on some secondary measures of gait speed and fatigue.Conclusions and RelevanceThese findings show proof of concept that vigorous training intensity is a critical dosing parameter for walking rehabilitation. In patients with chronic stroke, vigorous walking exercise produced significant and meaningful gains in walking capacity with only 4 weeks of training, but at least 12 weeks were needed to maximize immediate gains.Trial RegistrationClinicalTrials.gov Identifier: NCT03760016
Myelin-deficient (md) rats and their unaffected littermates were injected at postnatal day 4 either with a single dose of transferrin (Tf) or insulin-like growth factor one (IGF-1) singly or combined. Two weeks later, their brains were perfused and coronal sections were analyzed for MBP by in situ hybridization and for transferrin and myelin basic protein (Tf and MBP) by double immunofluorescence. Each of the factors separately had an effect on mutant animals as seen by both increased OL maturation, and MBP mRNA and protein synthesis. The combination of factors resulted in a profound enhancement of the myelinogenic properties of oligodendrocytes (OL) with a consequent increase in the number of MBP-labeled fibers. The brains of unaffected littermates also responded to growth factor(s) injection either by increasing myelination in some brain areas or by regulating the synthesis of MBP in OL. Using rat OL cultures we studied the site of transferrin action for the expression of MBP gene. We found by run off transcription that the MBP mRNA was significantly increased at the nuclear level but the PLP message was unaffected. Thus, transferrin selectively regulates MBP at the transcriptional level and together with IGF-1 synergizes to increase both the maturation and myelinogenic properties of md and normal OL.
Disseminated cSS on MRI and cSAH on CT are independent imaging markers of increased risk for early recurrent ICH. These markers may provide additional insights into the mechanisms of ICH recurrence in patients with CAA.
Walking impairment impacts nearly 66% of stroke survivors and is a rising cause of morbidity worldwide. Despite conventional post-stroke rehabilitative care, the majority of stroke survivors experience continued limitations in their walking speed, temporospatial dynamics and walking capacity. Hence, novel and comprehensive approaches are needed to improve the trajectory of walking recovery in stroke survivors. Herein, we test the safety, feasibility and preliminary efficacy of two approaches for post-stroke walking recovery: backward locomotor treadmill training and transcutaneous spinal direct current stimulation. In this double-blinded study, 30 chronic stroke survivors (>6 months post-stroke) with mild-severe residual walking impairment underwent six 30-min sessions (three sessions/week) of backward locomotor treadmill training, with concurrent anodal (N = 19) or sham transcutaneous spinal direct current stimulation (N = 11) over the thoracolumbar spine, in a 2:1 stratified randomized fashion. The primary outcomes were: per cent participant completion, safety and tolerability of these two approaches. In addition, we collected data on training-related changes in overground walking speed, cadence, stride length (baseline, daily, 24-h post-intervention, 2 weeks post-intervention) and walking capacity (baseline, 24-h post-intervention, 2 weeks post-intervention), as secondary exploratory aims testing the preliminary efficacy of these interventions. Eighty-seven per cent (N = 26) of randomized participants completed the study protocol. The majority of the study attrition involved participants with severe baseline walking impairment. There were no serious adverse events in either the backward locomotor treadmill training or transcutaneous spinal direct current stimulation approaches. Also, both groups experienced a clinically meaningful improvement in walking speed immediately post-intervention that persisted at the 2-week follow-up. However, in contrast to our working hypothesis, anodal-transcutaneous spinal direct current stimulation did not enhance the degree of improvement in walking speed and capacity, relative to backward locomotor treadmill training + sham, in our sample. Backward locomotor treadmill training and transcutaneous spinal direct current stimulation are safe and feasible approaches for walking recovery in chronic stroke survivors. Definitive efficacy studies are needed to validate our findings on backward locomotor treadmill training-related changes in walking performance. The results raise interesting questions about mechanisms of locomotor learning in stroke, and well-powered transcutaneous spinal direct current stimulation dosing studies are needed to understand better its potential role as a neuromodulatory adjunct for walking rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.