Effects of parasites on individual hosts can eventually translate to impacts on host communities. In particular, parasitism can differentially affect host fitness among sympatric and interacting host species. We examined whether the impact of shared parasites varied among host species within the same community. Specifically, we looked at the impacts of the acanthocephalan Acanthocephalus galaxii, the trematodes Coitocaecum parvum and Maritrema poulini, and the nematode Hedruris spinigera, on three host species: the amphipods, Paracalliope fluviatilis and Paracorophium excavatum, and the isopod, Austridotea annectens. We assessed parasite infection levels in the three host species and tested for effects on host survival, behavior, probability of pairing, and fecundity. Maritrema poulini and C. parvum were most abundant in P. excavatum but had no effect on its survival, whereas they negatively affected the survival of P. fluviatilis, the other amphipod. Female amphipods carrying young had higher M. poulini and C. parvum abundance than those without, yet the number of young carried was not linked to parasite abundance. Behavior of the isopod A. annectens was affected by M. poulini infection; more heavily infected individuals were more active. Paracorophium excavatum moved longer distances when abundance of C. parvum was lower, yet no relationship existed with respect to infection by both M. poulini and C. parvum. The differential effects of parasites on amphipods and isopods may lead to community‐wide effects. Understanding the consequences of parasitic infection and differences among host species is key to gaining greater insight into the role of parasite mediation in ecosystem dynamics.
Parasites directly and indirectly influence the important interactions among hosts such as competition and predation through modifications of behaviour, reproduction and survival. Such impacts can affect local biodiversity, relative abundance of host species and structuring of communities and ecosystems. Despite having a firm theoretical basis for the potential effects of parasites on ecosystems, there is a scarcity of experimental data to validate these hypotheses, making our inferences about this topic more circumstantial. To quantitatively test parasites' role in structuring host communities, we set up a controlled, multigenerational mesocosm experiment involving four sympatric freshwater crustacean species that share up to four parasite species. Mesocosms were assigned to either of two different treatments, low or high parasite exposure. We found that the trematode Maritrema poulini differentially influenced the population dynamics of these hosts. For example, survival and recruitment of the amphipod Paracalliope fluviatilis were dramatically reduced compared to other host species, suggesting that parasites may affect their long-term persistence in the community. Relative abundances of crustacean species were influenced by parasites, demonstrating their role in host community structure. As parasites are ubiquitous across all communities and ecosystems, we suggest that the asymmetrical effects we observed are likely widespread structuring forces.
Parasite-mediated competition can shape community structure and host distribution. If two species compete for resources, parasites may indirectly change the outcome of competition. We tested the role of a trematode parasite in mediating microhabitat use by congeneric isopods and Although both isopods share resources, they rarely co-occur in the same discrete microhabitats. We set up mesocosms with and without competition and/or parasites to examine the role of parasites in host distribution and habitat segregation. showed a clear preference for one microhabitat type regardless of competition or parasitic infection. By contrast, showed little habitat selection in the absence of competition, but favoured sandy habitats in the presence of uninfected and rocky habitats when competing with infected Our results suggest that parasites in one species affect the distribution of another species, and mediate competition between these species. We demonstrated the impacts of a parasite on the microhabitat use of its host's competitor. This also represents an example of a super-extended phenotype, where a parasite affects the phenotype of a non-host.
Chemical communication within an aquatic environment creates an intricate signaling web that provides species with information about their surroundings. Signaling molecules, like oxylipins, mediate a multitude of interactions between free-living members of a community including non-consumptive effects by predators. Parasites are another source of signaling molecules in aquatic communities and contribute directly by synthesizing them or indirectly by manipulating host chemical cues. If chemical cues of infected hosts are altered, then non-consumptive interactions between other members of the community may also be affected. Different cues from infected hosts may alter behaviors in other individuals related to foraging, competition, and defense priming. Here, we discuss how parasites could modify host chemical cues, which may have far reaching consequences for other community members and the ecosystem. We discuss how the modification of signaling molecules by parasites may also represent a mechanism for parasite-modified behavior within some systems and provide a mechanism for non-consumptive effects of parasites. Further, we propose a host-parasite system that could be used to investigate some key, unanswered questions regarding the relationship between chemical cues, parasite-modified behavior, and non-consumptive effects. We explain how trematode-gastropod systems can be used to test whether there are alterations in the diversity and amounts of signaling molecules available, and if habitat use, immune function, and behavior of other individuals and species are affected. Finally, we argue that changes to pathway crosstalk by parasites within communities may have broad ecological implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.