Poly(L-lactide) (PLLA)/polyethylene glycol (PEG) mixed solutions were successfully electrospun into micro-or nanofibrous polymer mats. The fiber diameter was in the range 100nm-6μm. The effect of the concentration of the spinning solutions and the ratio of PLLA/PEG on the fiber diameter and morphology was investigated. The hydrophilicity was tuned by varying the PLLA/PEG ratio. The tissue compatibility of the electrospun nanofibrous scaffolds was screened using two different cell models of human dermal fibroblasts and the osteoblast-like cell line MG-63. Both types of cells attached uniformly and approximately equally to all PLLA/PEG nanofibers. In long-term cultures osteoblast-like cells tend to spatially organize in tissue-like structure, particularly within the scaffold with the highest PEG content (PLLA/PEG at weight ratio 70/30). These results indicate that PLLA mixed with hydrophilic PEG produces a promising new biocompatible material for engineering scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.