Most semi-supervised learning methods are based on extending existing supervised or unsupervised techniques by incorporating additional information from unlabeled or labeled data. Unlabeled instances help in learning statistical models that fully describe the global property of our data, whereas labeled instances make learned knowledge more human-interpretable. In this paper we present a novel way of extending conventional non-negativematrix factorization (NMF) and probabilistic latent semantic analysis (pLSA) to semi-supervised versions by incorporating label information for learning semantics. The proposed algorithm consists of two steps, first acquiring prior bases representing some classes from labeled data and second utilizing them to guide the learning of final bases that are semantically interpretable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.