This paper aims to develop an innovative neural network approach to achieve better stock market predictions. Data were obtained from the live stock market for real-time and off-line analysis and results of visualizations and analytics to demonstrate Internet of Multimedia of Things for stock analysis. To study the influence of market characteristics on stock prices, traditional neural network algorithms may incorrectly predict the stock market, since the initial weight of the random selection problem can be easily prone to incorrect predictions. Based on the development of word vector in deep learning, we demonstrate the concept of “stock vector.” The input is no longer a single index or single stock index, but multi-stock high-dimensional historical data. We propose the deep long short-term memory neural network (LSTM) with embedded layer and the long short-term memory neural network with automatic encoder to predict the stock market. In these two models, we use the embedded layer and the automatic encoder, respectively, to vectorize the data, in a bid to forecast the stock via long short-term memory neural network. The experimental results show that the deep LSTM with embedded layer is better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.