This paper proposes a novel local descriptor evaluated from the Finite Element Analysis for human action recognition. This local descriptor represents the distinctive human poses in the form of the stiffness matrix. This stiffness matrix gives the information of motion as well as shape change of the human body while performing an action. Initially, the human body is represented in the silhouette form. Most prominent points of the silhouette are then selected. This silhouette is discretized into several finite small triangle faces (elements) where the prominent points of the boundaries are the vertices of the triangles. The stiffness matrix of each triangle is then calculated. The feature vector representing the action video frame is constructed by combining all stiffness matrices of all possible triangles. These feature vectors are given to the Radial Basis Function-Support Vector Machine (RBF-SVM) classifier. The proposed method shows its superiority over other existing state-of-the-art methods on the challenging datasets Weizmann, KTH, Ballet, and IXMAS.
Human action recognition has a very vast application such as security, patient care, etc. Background cluttering, appearance change due to variation in viewpoint and occlusion are the prominent hurdles that can reduce the recognition rate significantly. Methodologies based on Bag-of-visual-words are very popular because they do not require accurate background subtraction. But the main disadvantage with these methods is that they do not retain the geometrical structural information of the clusters that they form. As a result, they show intra-class mismatching. Furthermore, these methods are very sensitive to noise. Addition of noise in the cluster also results in the misclassification of the action. To overcome these problems we proposed a new approach based on modified Bag-of-visual-word. Proposed methodology retains the geometrical structural information of the cluster based on the calculation of contextual distance among the points of the cluster. Normally contextual distance based on Euclidean measure cannot deal with the noise but in the proposed methodology contextual distance is calculated on the basis of a difference between the contributions of cluster points to maintain its geometrical structure. Later directed graphs of all clusters are formed and these directed graphs are described by the Laplacian. Then the feature vectors representing Laplacian are fed to the Radial Basis Function based Support Vector Machine (RBF-SVM) classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.