The cause(s) of sarcoidosis is unknown. Mycobacterium spp. are suspected in Europe and Propionibacterium spp. are suspected in Japan. The present international collaboration evaluated the possible etiological links between sarcoidosis and the suspected bacterial species. Formalin-fixed and paraffin-embedded sections of biopsy samples of lymph nodes, one from each of 108 patients with sarcoidosis and 65 patients with tuberculosis, together with 86 control samples, were collected from two institutes in Japan and three institutes in Italy, Germany, and England. Genomes of Propionibacterium acnes, Propionibacterium granulosum, Mycobacterium tuberculosis, Mycobacterium avium subsp. paratuberculosis, and Escherichia coli (as the control) were counted by quantitative real-time PCR. Either P. acnes or P. granulosum was found in all but two of the sarcoid samples. M. avium subsp. paratuberculosis was found in no sarcoid sample. M. tuberculosis was found in 0 to 9% of the sarcoid samples but in 65 to 100% of the tuberculosis samples. In sarcoid lymph nodes, the total numbers of genomes of P. acnes or P. granulosum were far more than those of M. tuberculosis. P. acnes or P. granulosum was found in 0 to 60% of the tuberculosis and control samples, but the total numbers of genomes of P. acnes or P. granulosum in such samples were less than those in sarcoid samples. Propionibacterium spp. are more likely than Mycobacteria spp. to be involved in the etiology of sarcoidosis, not only in Japanese but also in European patients with sarcoidosis.
A B S T R A C T Metabolism of [3H]25-hydroxyvitamin D3(25-OH-D3) was studied in primary cultures of pulmonary alveolar macrophages (PAM) from seven patients with sarcoidosis and two patients with idiopathic pulmonary fibrosis. Production of a [3H]1,25-dihy-[3H]25-OH-D3 was detected in lipid extracts of cells from five patients with sarcoidosis. Synthesis of this compound in vitro was limited to viable PAM and was greatest in cells derived from a patient with hypercalcemia and an elevated serum concentration of 1,25-dihydroxyvitamin D. The tritiated PAM metabolite coeluted with authentic 1,25-(OH)2-D3 in three different solvent systems on straight-phase high performance liquid chromatography (HPLC) and demonstrated binding to extracted receptor for 1,25-(OH)2-D3, which was identical to that of commercially available [3H]1,25-(OH)2-D3 of comparable specific activity. Incubation of PAM with high concentrations of 25-OH-D3 resulted in production of an unlabeled metabolite that co-chromatographed with the 3H-PAM metabolite on HPLC and that was bound with high affinity by both the specific receptor for 1,25-(OH)2-D3 and antiserum to 1,25-
Objectives One of the thrust areas in drug delivery research is transdermal drug delivery systems (TDDS) due to their characteristic advantages over oral and parenteral drug delivery systems. Researchers have focused their attention on the use of microneedles to overcome the barrier of the stratum corneum. Microneedles deliver the drug into the epidermis without disruption of nerve endings. Recent advances in the development of microneedles are discussed in this review for the benefit of young scientists and to promote research in the area. Key findings Microneedles are fabricated using a microelectromechanical system employing silicon, metals, polymers or polysaccharides. Solid coated microneedles can be used to pierce the superficial skin layer followed by delivery of the drug. Advances in microneedle research led to development of dissolvable/degradable and hollow microneedles to deliver drugs at a higher dose and to engineer drug release. Iontophoresis, sonophoresis and electrophoresis can be used to modify drug delivery when used in concern with hollow microneedles. Microneedles can be used to deliver macromolecules such as insulin, growth hormones, immunobiologicals, proteins and peptides. Microneedles containing 'cosmeceuticals' are currently available to treat acne, pigmentation, scars and wrinkles, as well as for skin tone improvement. Summary Literature survey and patents filled revealed that microneedle-based drug delivery system can be explored as a potential tool for the delivery of a variety of macromolecules that are not effectively delivered by conventional transdermal techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.