The novel coronavirus, COVID-19, caused by SARS-CoV-2, is a global health pandemic that started in December 2019. The effective drug target among coronaviruses is the main protease Mpro, because of its essential role in processing the polyproteins that are translated from the viral RNA. In this study, the bioactivity of some selected heterocyclic drugs named Favipiravir (1), Amodiaquine (2), 2′-Fluoro-2′-deoxycytidine (3), and Ribavirin (4) was evaluated as inhibitors and nucleotide analogues for COVID-19 using computational modeling strategies. The density functional theory (DFT) calculations were performed to estimate the thermal parameters, dipole moment, polarizability, and molecular electrostatic potential of the present drugs; additionally, Mulliken atomic charges of the drugs as well as the chemical reactivity descriptors were investigated. The nominated drugs were docked on SARS-CoV-2 main protease (PDB: 6LU7) to evaluate the binding affinity of these drugs. Besides, the computations data of DFT the docking simulation studies was predicted that the Amodiaquine (2) has the least binding energy (−7.77 Kcal/mol) and might serve as a good inhibitor to SARS-CoV-2 comparable with the approved medicines, hydroxychloroquine, and remdesivir which have binding affinity −6.06 and −4.96 Kcal/mol, respectively. The high binding affinity of 2 was attributed to the presence of three hydrogen bonds along with different hydrophobic interactions between the drug and the critical amino acids residues of the receptor. Finally, the estimated molecular electrostatic potential results by DFT were used to illustrate the molecular docking findings. The DFT calculations showed that drug 2 has the highest of lying HOMO, electrophilicity index, basicity, and dipole moment. All these parameters could share with different extent to significantly affect the binding affinity of these drugs with the active protein sites.
A new series of chair-shaped liquid crystalline complexes were formed through 1 : 1 intermolecular hydrogen bonding between 4-(4-(hexyloxyphenylimino)methyl)phenyl nicotinate and 4-alkoxybenzoic acids, with different alkoxy chains.
Four new series of laterally methyl-substituted hydrogen-bonded supramolecular complexes were prepared. The prepared complexes were thermally investigated by differential scanning calorimetry (DSC) and phases identified by polarized light microscopy (PLM). Supramolecular hydrogen-bonded complexes formed from a 1:1 mixture of any two derivatives, bearing different alkoxy chains, of 4-alkoxyphenylazobenzoic acid and 4-(2-(pyridin-4-yl)diazenyl-(2-(or 3-)methylphenyl) 4-alkoxybenzoate. The investigated 1:1 mixture made by introducing a lateral methyl group by different spatial orientation angles into pyridine-based components. All new complexes were confirmed by Fourier-transform infrared spectroscopy (FTIR) and computational calculations used to study their stabilities. It is found that the prepared complexes are dimorphic, exhibiting smectic C and enhanced nematic phases. A comparison was made between the new series and previously investigated simpler complexes, revealed that the incorporation of the phenylazo group elongate the mesogenic part and hence broad nematic phases were obtained with high stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.