Internet of Things (IoT) is promising technology that brings tremendous benefits if used optimally. At the same time, it has resulted in an increase in cybersecurity risks due to the lack of security for IoT devices. IoT botnets, for instance, have become a critical threat; however, systematic and comprehensive studies analyzing the importance of botnet detection methods are limited in the IoT environment. Thus, this study aimed to identify, assess and provide a thoroughly review of experimental works on the research relevant to the detection of IoT botnets. To accomplish this goal, a systematic literature review (SLR), an effective method, was applied for gathering and critically reviewing research papers. This work employed three research questions on the detection methods used to detect IoT botnets, the botnet phases and the different malicious activity scenarios. The authors analyzed the nominated research and the key methods related to them. The detection methods have been classified based on the techniques used, and the authors investigated the botnet phases during which detection is accomplished. This research procedure was used to create a source of foundational knowledge of IoT botnet detection methods. As a result of this study, the authors analyzed the current research gaps and suggest future research directions.
DDoS (Distributed Denial of Service) attacks have now become a serious risk to the integrity and confidentiality of computer networks and systems, which are essential assets in today’s world. Detecting DDoS attacks is a difficult task that must be accomplished before any mitigation strategies can be used. The identification of DDoS attacks has already been successfully implemented using machine learning/deep learning (ML/DL). However, due to an inherent limitation of ML/DL frameworks—so-called optimal feature selection—complete accomplishment is likewise out of reach. This is a case in which a machine learning/deep learning-based system does not produce promising results for identifying DDoS attacks. At the moment, existing research on forecasting DDoS attacks has yielded a variety of unexpected predictions utilising machine learning (ML) classifiers and conventional approaches for feature encoding. These previous efforts also made use of deep neural networks to extract features without having to maintain the track of the sequence information. The current work suggests predicting DDoS attacks using a hybrid deep learning (DL) model, namely a CNN with BiLSTM (bidirectional long/short-term memory), in order to effectively anticipate DDoS attacks using benchmark data. By ranking and choosing features that scored the highest in the provided data set, only the most pertinent features were picked. Experiment findings demonstrate that the proposed CNN-BI-LSTM attained an accuracy of up to 94.52 percent using the data set CIC-DDoS2019 during training, testing, and validation.
Applications based on Wireless Sensor Networks (WSN) have shown to be quite useful in monitoring a particular geographic area of interest. Relevant geometries of the surrounding environment are essential to establish a successful WSN topology. But it is literally hard because constructing a localization algorithm that tracks the exact location of Sensor Nodes (SN) in a WSN is always a challenging task. In this research paper, Distance Matrix and Markov Chain (DM-MC) model is presented as node localization technique in which Distance Matrix and Estimation Matrix are used to identify the position of the node. The method further employs a Markov Chain Model (MCM) for energy optimization and interference reduction. Experiments are performed against two well-known models, and the results demonstrate that the proposed algorithm improves performance by using less network resources when compared to the existing models. Transition probability is used in the Markova chain to sustain higher energy nodes. Finally, the proposed Distance Matrix and Markov Chain model decrease energy use by 31% and 25%, respectively, compared to the existing DV-Hop and CSA methods. The experimental results were performed against two proven models, Distance Vector-Hop Algorithm (DV-HopA) and Crow Search Algorithm (CSA), showing that the proposed DM-MC model outperforms both the existing models regarding localization accuracy and Energy Consumption (EC). These results add to the credibility of the proposed DC-MC model as a better model for employing node localization while establishing a WSN framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.