Photographs taken in public places often contain faces of bystanders thus leading to a perceived or actual violation of privacy. To address this issue, we propose to pseudo-randomly modify the appearance of face regions in the images using a privacy filter that prevents a human or a face recogniser from inferring the identity of people. The filter, which is applied only when the resolution is high enough for a face to be recognisable, adaptively distorts the face appearance as a function of its resolution. Moreover, the proposed filter locally changes the values of its parameters to counter attacks that attempt to estimate them. The filter exploits both global adaptiveness to reduce distortion and local parameter hopping to make their estimation difficult for an attacker. In order to evaluate the efficiency of the proposed approach, we consider an important scenario of oblique face images: photographs taken with low altitude Micro Aerial Vehicles (MAVs). We use a state-of-the-art face recognition algorithm and synthetically generated face data with 3D geometric image transformations that mimic faces captured from an MAV at different heights and pitch angles. Experimental results show that the proposed filter protects privacy while reducing distortion, and is also robust against attacks.INDEX TERMS Image privacy protection, hopping Gaussian blur, micro aerial vehicles.
Cameras mounted on Micro Aerial Vehicles (MAVs) are increasingly used for recreational photography. However, aerial photographs of public places often contain faces of bystanders thus leading to a perceived or actual violation of privacy. To address this issue, we propose to pseudo-randomly modify the appearance of face regions in the images using a privacy filter that prevents a human or a face recogniser from inferring the identities of people. The filter, which is applied only when the resolution is high enough for a face to be recognisable, adaptively distorts the face appearance as a function of its resolution. Moreover, the proposed filter locally changes its parameters to discourage attacks that use parameter estimation. The filter exploits both global adaptiveness to reduce distortion and local hopping of the parameters to make their estimation difficult for an attacker. In order to evaluate the efficiency of the proposed approach, we use a state-of-the-art face recognition algorithm and synthetically generated face data with 3D geometric image transformations that mimic faces captured from an MAV at different heights and pitch angles. Experimental results show that the pro-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.