Mobile eye tracking is an important tool in psychology and humancentred interaction design for understanding how people process visual scenes and user interfaces. However, analysing recordings from mobile eye trackers, which typically include an egocentric video of the scene and a gaze signal, is a time-consuming and largely manual process. To address this challenge, we propose a web-based annotation tool that leverages few-shot image classification and interactive machine learning (IML) to accelerate the annotation process. The tool allows users to efficiently map fixations to areas of interest (AOI) in a video-editing-style interface. It includes an IML component that generates suggestions and learns from user feedback using a few-shot image classification model initialised with a small number of images per AOI. Our goal is to improve the efficiency and accuracy of fixation-to-AOI mapping in mobile eye tracking.
Eye movements were shown to be an effective source of implicit relevance feedback in constrained search and decision-making tasks. Recent research suggests that gaze-based features, extracted from scanpaths over short news articles (g-REL), can reveal the perceived relevance of read text with respect to a previously shown trigger question. In this work, we aim to confirm this finding and we investigate whether it generalizes to multi-paragraph documents from Wikipedia (Google Natural Questions) that require readers to scroll down to read the whole text. We conduct a user study (n = 24) in which participants read single- and multi-paragraph articles and rate their relevance at the paragraph level with respect to a trigger question. We model the perceived document relevance using machine learning and features from the literature as input. Our results confirm that eye movements can be used to effectively model the relevance of short news articles, in particular if we exclude difficult cases: documents which are on topic of the trigger questions but irrelevant. However, our results do not clearly show that the modeling approach generalizes to multi-paragraph document settings. We publish our dataset and our code for feature extraction under an open source license to enable future research in the field of gaze-based implicit relevance feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.