Lung cancer (LC) represents most of the cancer incidences in the world. There are many types of LC, but Lung Adenocarcinoma (LUAD) is the most common type. Although RNA-seq and microarray data provide a vast amount of gene expression data, most of the genes are insignificant to clinical diagnosis. Feature selection (FS) techniques overcome the high dimensionality and sparsity issues of the large-scale data. We propose a framework that applies an ensemble of feature selection techniques to identify genes highly correlated to LUAD. Utilizing LUAD RNA-seq data from the Cancer Genome Atlas (TCGA), we employed mutual information (MI) and recursive feature elimination (RFE) feature selection techniques along with support vector machine (SVM) classification model. We have also utilized Random Forest (RF) as an embedded FS technique. The results were integrated and candidate biomarker genes across all techniques were identified. The proposed framework has identified 12 potential biomarkers that are highly correlated with different LC types, especially LUAD. A predictive model has been trained utilizing the identified biomarker expression profiling and performance of 97.99% was achieved. In addition, upon performing differential gene expression analysis, we could find that all 12 genes were significantly differentially expressed between normal and LUAD tissues, and strongly correlated with LUAD according to previous reports. We here propose that using multiple feature selection methods effectively reduces the number of identified biomarkers and directly affects their biological relevance.
The accurate detection of variants is essential for genomics-based studies. Currently, there are various tools designed to detect genomic variants, however, it has always been a challenge to decide which tool to use, especially when various major genome projects have chosen to use different tools. Thus far, most of the existing tools were mainly developed to work on short-read data (i.e., Illumina); however, other sequencing technologies (e.g. PacBio, and Oxford Nanopore) have recently shown that they can also be used for variant calling. In addition, with the emergence of artificial intelligence (AI)-based variant calling tools, there is a pressing need to compare these tools in terms of efficiency, accuracy, computational power, and ease of use. In this study, we evaluated the most widely used conventional and AI-based variant calling tools (BCFTools, GATK4, Platypus, DNAscope, and DeepVariant) in terms of accuracy and computational cost using both short-read and long-read data derived from three different sequencing technologies for the same set of samples from the Genome In A Bottle (GIAB) project. The analysis showed that AI-based variant calling tools supersede conventional ones for calling SNVs and INDELs using both long and short reads. In addition, we demonstrate the advantages and drawbacks of each tool while ranking them in each aspect of these comparisons. This study provides best practices for variant calling using AI-based and conventional variant callers with different types of sequencing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.