To date, over 150 disease-associated variants in CRB1 have been described, resulting in a range of retinal disease phenotypes including Leber congenital amaurosis and retinitis pigmentosa. Despite this, no genotype–phenotype correlations are currently recognised. We performed a retrospective review of electronic patient records to identify patients with macular dystrophy due to bi-allelic variants in CRB1. In total, seven unrelated individuals were identified. The median age at presentation was 21 years, with a median acuity of 0.55 decimalised Snellen units (IQR = 0.43). The follow-up period ranged from 0 to 19 years (median = 2.0 years), with a median final decimalised Snellen acuity of 0.65 (IQR = 0.70). Fundoscopy revealed only a subtly altered foveal reflex, which evolved into a bull’s-eye pattern of outer retinal atrophy. Optical coherence tomography identified structural changes—intraretinal cysts in the early stages of disease, and later outer retinal atrophy. Genetic testing revealed that one rare allele (c.498_506del, p.(Ile167_Gly169del)) was present in all patients, with one patient being homozygous for the variant and six being heterozygous. In trans with this, one variant recurred twice (p.(Cys896Ter)), while the four remaining alleles were each observed once (p.(Pro1381Thr), p.(Ser478ProfsTer24), p.(Cys195Phe) and p.(Arg764Cys)). These findings show that the rare CRB1 variant, c.498_506del, is strongly associated with localised retinal dysfunction. The clinical findings are much milder than those observed with bi-allelic, loss-of-function variants in CRB1, suggesting this in-frame deletion acts as a hypomorphic allele. This is the most prevalent disease-causing CRB1 variant identified in the non-Asian population to date.
Purpose To describe the clinical and electrophysiological features of adult-onset macular dystrophy, due to novel combinations of CDHR1 alleles, and compare the associated phenotypes with previous reports. Methods The clinical records of patients with macular dystrophy and biallelic variants in CDHR1 were reviewed. Data analysed included best corrected visual acuity (BCVA), fundus images: autofluorescence (AF) and optical coherence tomography (OCT); full field electroretinography (ERG) and pattern ERG (PERG). Results Seven patients from six pedigrees were ascertained. One patient was homozygous for a known synonymous variant p.(Pro261=), four were compound heterozygous for the p.(Pro261=) variant and a novel allele of CDHR1: p.(Gly188Ser), p.(Met1?), or p.(Val458Asp); one patient was compound heterozygous for two previously unreported variants: c.297+1G>T in trans with p.(Pro735Thr). The range of BCVA at the last clinic review was (6/5-6/60). Autofluorescence showed macular flecks of increased AF in mild cases and patches of reduced AF in severe cases. The OCT showed attenuation of the ellipsoid zone (EZ) in mild cases and loss of the EZ and the outer nuclear layer in severe cases; one patient had subfoveal hyporeflective region between the EZ and the retinal pigment epithelium. The full field ERG was normal or borderline subnormal in all cases, and the PERG was subnormal in mild cases or undetectable in severe cases. Conclusions This report corroborates previous observations that genotypes distinct from those causing pan-retinal dystrophy can cause a milder phenotype, predominantly affecting the macula, and expands the spectrum of these genotypes. The findings in this cohort suggest a potential macular susceptibility to mild perturbations of the photoreceptor cadherin.
Pathogenic variants in the gene HGSNAT (heparan-α-glucosaminide Nacetyltransferase) have been reported to underlie two distinct recessive conditions, depending on the specific genotype, mucopolysaccharidosis type IIIC (MPSIIIC)-a severe childhood-onset lysosomal storage disorder, and adult-onset nonsyndromic retinitis pigmentosa (RP). Here we describe the largest cohort to-date of HGSNATassociated nonsyndromic RP patients, and describe their retinal phenotype, leukocyte enzymatic activity, and likely pathogenic genotypes. We identified biallelic HGSNAT variants in 17 individuals (15 families) as the likely cause of their RP. None showed any other symptoms of MPSIIIC. All had a mild but significant reduction of HGSNAT enzyme activity in leukocytes. The retinal condition was generally of late-onset, showing progressive degeneration of a concentric area of paramacular retina, with preservation but reduced electroretinogram responses. Symptoms, electrophysiology, and imaging suggest the rod photoreceptor to be the cell initially compromised. HGSNAT enzymatic testing was useful in resolving diagnostic dilemmas in compatible patients. We identified seven novel sequence variants [p.(Arg239Cys); p.(Ser296Leu); p.(Phe428Cys); p.(Gly248Ala); p.(Gly418Arg), c.1543-2A>C; c.1708delA], three of which were considered to be retina-disease-specific alleles. The most prevalent retina-disease-specific allele p.(Ala615Thr) was observed heterozygously or homozygously in 8 and 5 individuals respectively (7 and 4 families). Two siblings in one family, while identical for the HGSNAT locus, but discordant for retinal disease, suggest the influence of transacting genetic or environmental modifying factors.
The eye is the window through which light is transmitted and visual sensory signalling originates. It is also a window through which elements of the cardiovascular and nervous systems can be directly inspected, using ophthalmoscopy or retinal imaging. Measurements of ocular parameters may therefore offer important information on the physiology and homeostasis of these two important systems. Here we report the results of a genetic characterisation of retinal vasculature. Four genome-wide association studies performed on different aspects of retinal vasculometry phenotypes, such as arteriolar and venular tortuosity and width, found significant similarities between retinal vascular characteristics and cardiometabolic health. Our analyses identified 119 different regions of association with traits of retinal vasculature, including 89 loci associated arteriolar tortuosity, the strongest of which was rs35131825 (p = 2.00×10−108), 2 loci with arteriolar width (rs12969347, p = 3.30×10−09 and rs5442, p = 1.9E-15), 17 other loci associated with venular tortuosity and 11 novel associations with venular width. Our causal inference analyses also found that factors linked to arteriolar tortuosity cause elevated diastolic blood pressure and not vice versa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.