In Oman, the unique geological properties of the reservoirs require different fracture strategies and technology deployment to make them commercially viable. Highly deviated wells, with multiple hydraulic fractures, have been identified as key technology enabler for the development of tight gas accumulations in Oman. The main objective of this study is to generate a 3D petrophysical and geomechanical view of the reservoir, to have a better understating of Hydraulic Fracturing for Horizontal and Highly Deviated Wells The comprehensive amount of data captured during the initial implementation phase of highly deviated wells covering reservoir characterization, fracture geomechanics as well as production logs in combination with the existent data captured in vertical wells, proves to be complex to analyze due to the volume of information and the multi variable nature associated with fracture and inflow predictions. A methodology was required where correlations and tendencies were identifiable at structural level, covering all target gas accumulations using all the static and dynamic captured data. The definition of a 3D Grid Visualization Block (3D-GVB) was introduced where all the captured parameters were distributed for analysis and interpretation. As a result of the appraisal and initial field development with vertical wells, it was possible to identify tight accumulations that will require dedicated highly deviated wells for its development. The initial phase of the implementation of highly deviated wells proves to be challenging, as the observed heterogeneities on geomechanical and petrophysical properties across the target gas accumulations, combined with differential depletion and the wells orientation to generate transverse fractures, creates a complex environment for fracture initiation and propagation, impacting not only fracture deployment but inflow deliverability of this wells. This paper will describe how the methodology uses a cycle of data analysis and interpretation to identify tendencies, that will lead to correlation and new algorithms that are retrofitted on the 3D-GVB platform, leading to optimization of well positioning at structural level, drilling and completion of this highly deviated wells. It will be described how this methodology is used for well positioning at structural level, to define well architectures oriented to enhance not only drilling, but also hydraulic fracturing and hydrocarbon deliverability on highly deviated wells.
There has been a string of exploration discoveries in Cambrian Ara Group intra-salt carbonate reservoirs in the South Oman. Some of the reservoirs failed to produce at expected rates due to halite presence in the pore space, which is one of the highest risks for hydrocarbon exploration in this area. The objective of this study was to define novel quantitative algorithm to estimate halite volumes in the pore space. Although halite cementation is known as a major risk for hydrocarbon production, a limited number of studies have focused on the impact of halite cementation on productivity, well integrity and ultimate recovery. The quantitative halite volume evaluation based on the logging data required an integrated approach to open hole and cased hole data collection and analysis. The open hole data included: thin section and XRD core analysis, density, neutron, sonic, resistivity, formation pressure and sigma capture-cross section. Net pay cut-off based on calculated halite volume was defined. Cased hole production logging was used to confirm net cut-off definition. The integrated logging data analysis and the developed quantitative halite volume evaluation algorithm mainly based on sigma log was successfully implemented in a few ongoing development projects. The evaluation results were successfully used for hydrocarbon volume calculations, well placement and perforation interval selection to improve production performance and reduce field development uncertainty in recoverable volumes. Understanding of consistent pattern for halite distribution allow improve exploration success. Avoiding perforation of intervals with high halite content in the pore space reduced production deferment due to surface equipment and tubing plugging by salt. Appreciation for the role of halite plugging in the reservoirs properties distribution and deterioration significantly improve history match for hydrodynamic models. The evaluation algorithm for quantitative halite volume estimation in the pore space have been developed and introduced for the first time and benefits from its implementation are expected for the upcoming exploration and development projects for the salt encased carbonate reservoirs.
South Oman contains several tight silicilyte reservoirs with significant locked hydrocarbon volumes. Successful hydraulic fracturing is key for unlocking commercial production. Low production rates coupled with fast declines have remained a challenge and a new economically attractive development scheme was required. Through integrated re-evaluation of the geology and reservoir, a modified frac approach was designed to create more connectivity to the reservoir height, using an unconventional frac design and frac fluids plus over-flush. Poor well productivity in tight silicilyte reservoir can be explained by low permeability of 0.001-0.1 mD and laminated texture with almost zero vertical permeability. Fit for purpose modelling was performed to assess the forecasting range for sub-surface uncertainties and frac parameters. One of the key changes for a successful development strategy was to place a higher number of fracs to overcome the extreme lamination. [1] It was observed that the "conventional" fracturing approach inaccurately assumed higher vertical fracture coverage of the reservoir and that the guar fluid used was much more damaging due to low recovery after frac clean-up. Fifteen unconventional fracs were pumped successfully with over-flush pumping technique. To understand if this new unconventional approach was effective in overcoming the extreme lamination required additional understanding of fractures geometry and orientation. To confirm fracture dimensions and flowing heights; a set of radioactive, chemical tracers and logging activities were completed. Flowback results showed that the unconventional frac [3] fluid used, was relatively easy to recover from formation and better cleaning-up of fractures can be achieved. This led to successful well clean-up compared to previous wells in the same field and confirmed better fracs clean up. Initial production results confirmed at least double well initial productivity, which should lead to better stable oil production from the field. Radioactive tracers logging, Sonic logging and Spectrum Noise Logging (SNL) confirmed mechanical and conductive fracture heights. Sonic logging also confirmed frac orientation. Oil and water dissolvable tracers confirmed fractures clean up from water and oil production intervals. Full geological and reservoir understanding, out of box thinking in frac technology allowed the asset team to come up with an unconventional development approach to improve commercial production from tight silicilyte reservoirs. The new frac approach included unconventional frac design and fluids, and execution using over flush and resulted into unlocking significant reserves. A more economic full field development is being planned and replication of the new frac approach is already ongoing in other fields.
Pre-Cambrian South Oman tight silicilyte reservoirs are very challenging for the development due to poor permeability less than 0.1 mD and laminated texture. Successful hydraulic fracturing is a key for the long commercial production. One of the main parameter for frac planning and optimization is fracture geometry. The objective of this study was summarizing results comparison from different logging methods and recommended best practices for logging program targeting fracture geometry evaluation. The novel method in the region for hydraulic fracture height and orientation evaluation is cross-dipole cased hole acoustic logging. The method allows to evaluate fracture geometry based on the acoustic anisotropy changes after frac operations in the near wellbore area. The memory sonic log combined with the Gyro was acquired before and after frac operations in the cased hole. The acoustic data was compared with Spectral Noise log, Chemical and Radioactive tracers, Production Logging and pre-frac model. Extensive logging program allow to complete integrated evaluation, define methods limitations and advantages, summarize best practices and optimum logging program for the future wells. The challenges in combining memory cross-dipole sonic log and gyro in cased hole were effectively resolved. The acoustic anisotropy analysis successfully confirms stresses and predominant hydraulic fractures orientation. Fracture height was confirmed based on results from different logging methods. Tracers are well known method for the fracture height evaluation after hydraulic frac operations. The Spectral Noise log is perfect tool to evaluate hydraulically active fracture height in the near wellbore area. The combination of cased hole acoustic and noise logging methods is a powerful complex for hydraulic fracture geometry evaluation. The main limitations and challenges for sonic log are cement bond quality and hole conditions after frac operations. Noise log has limited depth of investigation. However, in combination with production and temperature logging provides reliable fit for purpose capabilities. The abilities of sonic anisotropy analysis for fracture height and hydraulic fracture orientation were confirmed. The optimum logging program for fracture geometry evaluation was defined and recommended for replication in projects were fracture geometry evaluation is required for hydraulic fracturing optimization.
The paper discusses a petrophysical evaluation method for complex tight gas formations in a mature and partially depleted gas condensate field in Oman, allowing a full petrophyscial evaluation as well as geomechanical modeling from a source-less petrophysical dataset, thus reducing operational data acquisition risk in partially depleted reservoirs without compromising on hydraulic fracturing design. The developed methodology includes the volume of shale estimation from correlation with Poisson's ratio for the feldspathic rich tight formation. This methodology was used in deep tight fields in Oman for more than 3 years in both vertical and highly deviated wells greatly reducing the risk, logging cost and complexity of operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.