Complex economic systems can often be described by a network, with nodes representing economic entities and edges their interdependencies, while network centrality is often a good indicator of importance. Recent publications have implemented a nonlinear iterative Fitness-Complexity (FC) algorithm to measure centrality in a bipartite trade network, which aims to represent the ‘Fitness’ of national economies as well as the ‘Complexity’ of the products being traded. In this paper, we discuss this methodological approach and conclude that further work is needed to identify stable and reliable measures of fitness and complexity. We provide theoretical and numerical evidence for the intrinsic instability in the nonlinear definition of the FC algorithm. We perform an in-depth evaluation of the algorithm’s rankings in two real world networks at the country level: the global trade network, and the patent network in different technological domains. In both networks, we find evidence of the instabilities predicted theoretically, and show that ‘complex’ products or patents tend often to be those that countries rarely produce, rather than those that are intrinsically more difficult to produce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.