The immunometabolic status of peripartal cows is altered due to changes in liver function, inflammation, and oxidative stress. Nutritional management during this physiological state can affect the biological components of immunometabolism. The objectives of this study were to measure concentrations of biomarkers in plasma, liver tissue, and milk, and also polymorphonuclear leukocyte function to assess the immunometabolic status of cows supplemented with rumen-protected methionine (Met) or choline (CHOL). Forty-eight multiparous Holstein cows were used in a randomized complete block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without). Treatments (12 cows each) were control (CON), no Met or CHOL; CON and Met (SMA); CON and CHOL (REA); and CON and Met and CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet [1.40Mcal of net energy for lactation (NE)/kg of DM] with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NE/kg of DM) and were assigned randomly to each treatment. From calving to 30d, cows were on the same postpartal diet (1.71Mcal of NE/kg of DM) and continued to receive the same treatments until 30d. The Met supplementation was adjusted daily at 0.08% DM of diet, and CHOL was supplemented at 60g/cow per day. Liver (-10, 7, 21, and 30d) and blood (-10, 4, 8, 20, and 30d) samples were harvested for biomarker analyses. Neutrophil and monocyte phagocytosis and oxidative burst were assessed at d 1, 4, 14, and 28d. The Met-supplemented cows tended to have greater plasma paraoxonase. Greater plasma albumin and IL-6 as well as a tendency for lower haptoglobin were detected in Met- but not CHOL-supplemented cows. Similarly, cows fed Met compared with CHOL had greater concentrations of total and reduced glutathione (a potent intracellular antioxidant) in liver tissue. Upon a pathogen challenge in vitro, blood polymorphonuclear leukocyte phagocytosis capacity and oxidative burst activity were greater in Met-supplemented cows. Overall, liver and blood biomarker analyses revealed favorable changes in liver function, inflammation status, and immune response in Met-supplemented cows.
BackgroundInnate immune responses induced by in vitro stimulation of primary mammary epithelial cells (MEC) using Gram-negative lipopolysaccharide (LPS) and Gram-positive lipoteichoic acid (LTA) bacterial cell wall components are well- characterized in bovine species. The objective of the current study was to characterize the downstream regulation of the inflammatory response induced by Toll-like receptors in primary goat MEC (pgMEC). We performed quantitative real-time RT-PCR (qPCR) to measure mRNA levels of 9 genes involved in transcriptional regulation or antibacterial activity: Toll-like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), prostaglandin-endoperoxide synthase 2 (PTGS2), interferon induced protein with tetratricopeptide repeats 3 (IFIT3), interferon regulatory factor 3 (IRF3), myeloid differentiation primary response 88 (MYD88), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1), Toll interacting protein (TOLLIP), and lactoferrin (LTF). Furthermore, we analyzed 7 cytokines involved in Toll-like receptor signaling pathways: C-C motif chemokine ligand 2 (CCL2), C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 6 (CXCL6), interleukin 8 (CXCL8), interleukin 1 beta (IL1B), interleukin 6 (IL6), and tumor necrosis factor alpha (TNF).ResultsStimulation of pgMEC with LPS for 3 h led to an increase in expression of CCL2, CXCL6, IL6, CXCL8, PTGS2, IFIT3, MYD88, NFKB1, and TLR4 (P < 0.05). Except for IL6, and PTGS2, the same genes had greater expression than controls at 6 h post-LPS (P < 0.05). Expression of CCL5, PTGS2, IFIT3, NFKB1, TLR4, and TOLLIP was greater than controls after 3 h of incubation with LTA (P < 0.05). Compared to controls, stimulation with LTA for 6 h led to greater expression of PTGS2, IFIT3, NFKB1, and TOLLIP (P < 0.05) whereas the expression of CXCL6, CXCL8, and TLR4 was lower (P < 0.05). At 3 h incubation with both toxins compared to controls a greater expression (P < 0.05) of CCL2, CCL5, CXCL6, CXCL8, IL6, PTGS2, IFIT3, IRF3, MYD88, and NFKB1 was detected. After 6 h of incubation with both toxins, the expression of CCL2, CXCL6, IFIT3, MYD88, NFKB1, and TLR4 was higher than the controls (P < 0.05).ConclusionsData indicate that in the goat MEC, LTA induces a weaker inflammatory response than LPS. This may be related to the observation that gram-positive bacteria cause chronic mastitis more often than gram-negative infections.Electronic supplementary materialThe online version of this article (doi:10.1186/s40104-017-0162-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.