Improving drug delivery to the kidney using renal-targeted therapeutics is a promising but underdeveloped area. We aimed to develop a kidney-targeting construct for renal-specific drug delivery. Elastin-like polypeptides (ELPs) are nonimmunogenic protein-based carriers that can stabilize attached small-molecule and peptide therapeutics. We modified ELP at its NH-terminus with a cyclic, seven-amino acid kidney-targeting peptide (KTP) and at its COOH-terminus with a cysteine residue for tracer conjugation. Comparative in vivo pharmacokinetics and biodistribution in rat and swine models and in vitro cell binding studies using human renal cells were performed. KTP-ELP had a longer plasma half-life than ELP in both animal models and was similarly accumulated in kidneys at levels fivefold higher than untargeted ELP, showing renal levels 15- to over 150-fold higher than in other major organs. Renal fluorescence histology demonstrated high accumulation of KTP-ELP in proximal tubules and vascular endothelium. Furthermore, a 14-day infusion of a high dose of ELP or KTP-ELP did not affect body weight, glomerular filtration rate, or albuminuria, or induce renal tissue damage compared with saline-treated controls. In vitro experiments showed higher binding of KTP-ELP to human podocytes, proximal tubule epithelial, and glomerular microvascular endothelial cells than untargeted ELP. These results show the high renal selectivity of KTP-ELP, support the notion that the construct is not species specific, and demonstrate that it does not induce acute renal toxicity. The plasticity of ELP for attachment of any class of therapeutics unlocks the possibility of applying ELP technology for targeted treatment of renal disease in future studies.
Preeclampsia (PE) is a form of gestational hypertension that complicates ~ 5 percent of pregnancies worldwide. Over 70 percent of the fatal cases of PE are attributed to cerebral edema, intracranial hemorrhage, and eclampsia. The etiology of PE originates from abnormal remodeling of the maternal spiral arteries, creating an ischemic placenta that releases factors that drive the pathophysiology. An initial neurological outcome of PE is the absence of the autonomically regulated cardiovascular adaptations to pregnancy. PE patients exhibit sympathetic overactivation, in comparison to both normotensive pregnant and hypertensive non-pregnant females. Moreover, PE diminishes baroreceptor reflex sensitivity (BRS) beyond that observed in healthy pregnancy. The absence of the cardiovascular adaptations to pregnancy, combined with sympathovagal imbalance and a blunted BRS leads to life-threatening neurological outcomes. Behaviorally, the increased incidences of maternal depression, anxiety, and post-traumatic stress disorder (PTSD) in PE are correlated to low fetal birth weight, intrauterine growth restriction (IUGR) and premature birth. This review addresses these neurological consequences of PE that present in the gravid female both during and after the index pregnancy.
Purpose of Review Vascular endothelial growth factors (VEGFs) influence renal function through angiogenesis, with VEGF-A being the most potent inducer of vascular formation. In the normal glomerulus, tight homeostatic balance is maintained between the levels of VEGF-A isoforms produced by podocyte cells, and the VEGF receptors (VEGFRs) expressed by glomerular endothelial, mesangial, and podocyte cells. Renal disease occurs when this homeostatic balance is lost, manifesting in the abnormal autocrine and paracrine VEGF-A/VEGFR signaling, ultrastructural glomerular and tubular damage, and impaired filtration. Recent Findings Preclinical disease models of ischemic renal injury, including acute ischemia/reperfusion, thrombotic microangiopathy, and chronic renovascular disease, treated with exogenous VEGF supplementation demonstrated therapeutic efficacy. These results suggest a therapeutic VEGF-A paracrine effect on endothelial cells in the context of acute or chronic obstructive ischemia. Conversely, renal dysfunction in diabetic nephropathy appears to occur through an upregulated VEGF autocrine effect on podocyte cells, which is exacerbated by hyperglycemia. Therefore, VEGF supplementation therapy may be contraindicated for treatment of diabetic nephropathy, but specific results will depend on dose and on the specific site of VEGF delivery. A drug delivery system that demonstrates cell specificity for glomerular or peritubular capillaries could be employed to restore balance to VEGF-A/VEGFR2 signaling, and by doing so prevent the progression to end stage renal disease (ESRD). Summary This review discusses the preclinical data available for VEGF supplementation therapy in models of renal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.