Abstract. An important problem in the theory of finite dynamical systems is to link the structure of a system with its dynamics. This paper contains such a link for a family of nonlinear systems over the field with two elements. For systems that can be described by monomials (including Boolean AND systems), one can obtain information about the limit cycle structure from the structure of the monomials. In particular, the paper contains a sufficient condition for a monomial system to have only fixed points as limit cycles. This condition depends on the cycle structure of the dependency graph of the system and can be verified in polynomial time.
It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields) are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field) is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.
Recently criteria for determining when a certain type of nonlinear discrete dynamical system is a fixed point system have been developed. This theory can be used to determine if certain events modeled by those systems reach a steady state. In this work we formalize the idea of a "stabilizable" discrete dynamical system. We present necessary and sufficient conditions for a Boolean monomial dynamical control system to be stabilizable in terms of properties of the dependency graph associated with the system. We use the equivalence of periodicity of the dependency graph and loop numbers to develop a new O(n 2 log n) algorithm for determining the loop numbers of the strongly connected components of the dependency graph, and hence a new O(n 2 log n) algorithm for determining when a Boolean monomial dynamical system is a fixed point system. Finally, we show how this result can be used to determine if a Boolean monomial dynamical control system is stabilizable in time O(n 2 log n).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.