Summary
In this paper, we present the compact representation for matrices belonging to the Broyden class of quasi‐Newton updates, where each update may be either rank one or rank two. This work extends previous results solely for the restricted Broyden class of rank‐two updates. In this article, it is not assumed that the same Broyden update is used in each iteration; rather, different members of the Broyden class may be used in each iteration. Numerical experiments suggest that a practical implementation of the compact representation is able to accurately represent matrices belonging to the Broyden class of updates. Furthermore, we demonstrate how to compute the compact representation for the inverse of these matrices and a practical algorithm for solving linear systems with members of the Broyden class of updates. We demonstrate through numerical experiments that the proposed linear solver is able to efficiently solve linear systems with members of the Broyden class of matrices with high accuracy. As an immediate consequence of this work, it is now possible to efficiently compute the eigenvalues of any limited‐memory member of the Broyden class of matrices, allowing for the computation of condition numbers and the ability to perform sensitivity analysis.
In this paper, we solve the 2 -1 sparse recovery problem by transforming the objective function of this problem into an unconstrained differentiable function and apply a limited-memory trust-region method. Unlike gradient projection-type methods, which uses only the current gradient, our approach uses gradients from previous iterations to obtain a more accurate Hessian approximation. Numerical experiments show that our proposed approach eliminates spurious solutions more effectively while improving the computational time to converge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.