There are abundant examples of natural, engineering and industrial applications, in which “solute transport” and “mixing” in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.
Low salinity waterflooding has proven to accelerate oil production at core and field scales. Wettability alteration from a more oil-wetting to a more water-wetting condition has been established as one of the most notable effects of low salinity waterflooding. To induce the wettability alteration, low salinity water should be transported to come in contact with the oil-water interfaces. Transport under two-phase flow conditions can be highly influenced by fluids topology that creates connected pathways as well as dead-end regions. It is known that under two-phase flow conditions, the pore space filled by a fluid can be split into flowing (connected pathways) and stagnant (deadend) regions due to fluids topology. Transport in flowing regions is advection controlled and transport in stagnant regions is predominantly diffusion controlled. To understand the full picture of wettability alteration of a rock by injection of low salinity water, it is important to know i) how the injected low salinity water displaces and mixes with the high salinity water, ii) how continuous wettability alteration impacts the redistribution of two immiscible fluids and (ii) role of hydrodynamic transport and mixing between the low salinity water and the formation brine (high salinity water) in wettability alteration. To address these two issues, computational fluid dynamic simulations of coupled dynamic two-phase flow, hydrodynamic transport and wettability alteration in a 2D domain were carried out using the volume of fluid method. The numerical simulations show that when low salinity water was injected, the formation brine (high salinity water) was swept out from the flowing regions by advection. However, the formation brine residing in stagnant regions was diffused very slowly to the low salinity water. The presence of formation brine in stagnant regions created heterogeneous wettability conditions at the pore scale, which led to remarkable two-phase flow dynamics and internal redistribution of oil, which is referred to as the "pull-push" behaviour and has not been addressed before in the literature. Our simulation results imply that the presence of stagnant regions in the tertiary oil recovery impedes the potential of wettability alteration for additional oil recovery. Hence, it would be favorable to inject low salinity water from the beginning of waterflooding to avoid stagnant saturation. We also observed that oil ganglia size was reduced under tertiary mode of low salinity waterflooding compared to the high salinity waterflooding.
Immiscible two-phase flow through porous materials exhibits different invasion patterns controlled by dynamic conditions, competition between the viscous and capillary forces, and the contrast between the fluids viscosities. Two distinct invasion patterns are viscous and capillary fingering. While the first one happens under unfavorable viscosity ratios at high injection rates, the second one happens when the viscous forces are very small compared to the capillary forces. Depending on whether the invasion is under the capillary fingering or viscous fingering regime, the remaining oil saturation and the effective permeability of the fluids can significantly change. The contribution of the present work has two key aspects: (a) It addresses how the remaining saturation changes at different flow rates (i.e., capillary numbers) for different unfavorable viscosity ratios in a three-dimensional system; (b) it presents a new dynamic pore network model using the fully implicit scheme which has been enhanced by the graphic processing unit (GPU) parallel computing. Additionally, the model has been carefully validated against micromodel experiments in both time and space, which to our best knowledge has not been reported in such detail in the literature. The results of the validated 3-D dynamic pore network model demonstrate the remaining saturation at the breakthrough time as a nonmonotonic trend with the imposed capillary number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.