Composite biomaterials are solids that contain two or more different materials, combining the properties of their components to restore or improve the function of tissues. In this study, we report the generation of electrospun matrices with osteoconductive properties and porosity using the combination of a biodegradable polyester, polylactic acid (PLA), and hydroxyapatite (HA). Additionally, we report the effects of modifying these matrices through plasma polymerization of pyrrole on the growth and osteogenic differentiation of rabbit bone marrow stem cells. Cells were isolated, seeded and cultured on biomaterials for periods between 7 and 28 days. The matrices we obtained were formed by nano and microfibers containing up to 35.7 wt% HA, presenting a variety of apparent pore sizes to allow for the passage of nutrients to bone cells. Scanning electron microscopy showed that the fibers were coated with polypyrrole doped with iodine, and MTT assay demonstrated this increased cell proliferation and significantly improved cell viability due to the adhesive properties of the polymer. Our results show that PLA/HA/Pyrrole/Iodine matrices are favorable for bone tissue engineering.
Cardiovascular diseases are the leading cause of death in the world, cell therapies have been shown to recover cardiac function in animal models. Biomaterials used as scaffolds can solve some of the problems that cell therapies currently have, plasma polymerized pyrrole (PPPy) is a biomaterial that has been shown to promote cell adhesion and survival. The present research aimed to study PPPy nanoparticles (PPPyN) interaction with adult rat ventricular cardiomyocytes (ARVC), to explore whether PPPyN could be employed as a nanoscaffold and develop cardiac microtissues. PPPyN with a mean diameter of 330 nm were obtained, the infrared spectrum showed that some pyrrole rings are fragmented and that some fragments of the ring can be dehydrogenated during plasma synthesis, it also showed the presence of amino groups in the structure of PPPyN. PPPyN had a significant impact on the ARVC´s shape, delaying dedifferentiation, necrosis, and apoptosis processes, moreover, the cardiomyocytes formed cell aggregates up to 1.12 mm2 with some aligned cardiomyocytes and generated fibers on its surface similar to cardiac extracellular matrix. PPPyN served as a scaffold for adult ARVC. Our results indicate that PPPyN-scaffold is a biomaterial that could have potential application in cardiac cell therapy (CCT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.