It has been recently shown that rough volatility models, where the volatility is driven by a fractional Brownian motion with small Hurst parameter, provide very relevant dynamics in order to reproduce the behavior of both historical and implied volatilities. However, due to the non-Markovian nature of the fractional Brownian motion, they raise new issues when it comes to derivatives pricing. Using an original link between nearly unstable Hawkes processes and fractional volatility models, we compute the characteristic function of the log-price in rough Heston models. In the classical Heston model, the characteristic function is expressed in terms of the solution of a Riccati equation.Here, we show that rough Heston models exhibit quite a similar structure, the Riccati equation being replaced by a fractional Riccati equation.
K E Y W O R D Sfractional Brownian motion, fractional Riccati equation, Hawkes processes, limit theorems, rough Heston models, rough volatility models Here the parameters , , 0 , and are positive, and and are two Brownian motions with correlation coefficient , that is, ⟨dW , dB ⟩ = dt.The popularity of this model is probably due to three main reasons:Mathematical Finance. 2019;29:3-38. wileyonlinelibrary.com/journal/mafi
We show that typical behaviors of market participants at the high frequency scale generate leverage effect and rough volatility. To do so, we build a simple microscopic model for the price of an asset based on Hawkes processes. We encode in this model some of the main features of market microstructure in the context of high frequency trading: high degree of endogeneity of market, no-arbitrage property, buying/selling asymmetry and presence of metaorders. We prove that when the first three of these stylized facts are considered within the framework of our microscopic model, it behaves in the long run as a Heston stochastic volatility model, where leverage effect is generated. Adding the last property enables us to obtain a rough Heston model in the limit, exhibiting both leverage effect and rough volatility. Hence we show that at least part of the foundations of leverage effect and rough volatility can be found in the microstructure of the asset.
Rough volatility models are very appealing because of their remarkable fit of both historical and implied volatilities. However, due to the non-Markovian and non-semimartingale nature of the volatility process, there is no simple way to simulate efficiently such models, which makes risk management of derivatives an intricate task. In this paper, we design tractable multi-factor stochastic volatility models approximating rough volatility models and enjoying a Markovian structure. Furthermore, we apply our procedure to the specific case of the rough Heston model. This in turn enables us to derive a numerical method for solving fractional Riccati equations appearing in the characteristic function of the log-price in this setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.