In the airline industry, the Aircraft Maintenance Routing (AMR) problem has been one of the great successes of operations research. The AMR problem is to determine a particular route for each aircraft to undergo different levels of maintenance checks. The objective is to minimize the total maintenance costs. In this study, our aim is to present a mathematical formulation for the AMR problem which takes into account the case of Aircraft On Ground (AOG). We develop solution approaches based on Particle Swarm Optimization algorithm and Genetic algorithm for solving the problem. The results show the effectiveness of this solution in reducing computational time.
In air transport, the cost related to crew members presents one of the most important cost supported by airline companies. The objective of the crew scheduling problem is to determine a minimum-cost set of pairings so that every flight leg is assigned a qualified crew and every pairing satisfies the set of applicable work rules. In this paper, we propose a solution for the crew scheduling problem with Particle Swarm Optimization (PSO) algorithm, this solution approach is compared with the Genetic Algorithm (GA) for both crew pairing and crew assignment problems which are the two part of crew scheduling problem.
This study formulates an innovative aircraft preventive maintenance model by taking into account the aircraft on ground (AOG) problem. The proposed model is solved by using binary particle swarm optimization (BPSO) and Genetic Algorithm (GA). It also proposes a methodology solution based on BPSO and GA to solve the airline crew scheduling problem. Additionally, a study of computational results is given to improve the quality of the solutions and the performance of the proposed algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.